【題目】如圖,已知線段AB=2,MN⊥AB于點M,且AM=BM,P是射線MN上一動點,E,D分別是PA,PB的中點,過點A,M,D的圓與BP的另一交點C(點C在線段BD上),連結(jié)AC,DE.
(1)當∠APB=28°時,求∠B和 的度數(shù);
(2)求證:AC=AB.
(3)在點P的運動過程中
①當MP=4時,取四邊形ACDE一邊的兩端點和線段MP上一點Q,若以這三點為頂點的三角形是直角三角形,且Q為銳角頂點,求所有滿足條件的MQ的值;
②記AP與圓的另一個交點為F,將點F繞點D旋轉(zhuǎn)90°得到點G,當點G恰好落在MN上時,連結(jié)AG,CG,DG,EG,直接寫出△ACG和△DEG的面積之比.
【答案】
(1)
解:∵MN⊥AB,AM=BM,
∴PA=PB,
∴∠PAB=∠B,
∵∠APB=28°,
∴∠B=76°,
如圖1,連接MD,
∵MD為△PAB的中位線,
∴MD∥AP,
∴∠MDB=∠APB=28°,
∴ =2∠MDB=56°;
(2)
證明:∵∠BAC=∠MDC=∠APB,
又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,
∴∠BAP=∠ACB,
∵∠BAP=∠B,
∴∠ACB=∠B,
∴AC=AB;
(3)
解:①如圖2,記MP與圓的另一個交點為R,
∵MD是Rt△MBP的中線,
∴DM=DP,
∴∠DPM=∠DMP=∠RCD,
∴RC=RP,
∵∠ACR=∠AMR=90°,
∴AM2+MR2=AR2=AC2+CR2,
∴12+MR2=22+PR2,
∴12+(4﹣PR)2=22+PR2,
∴PR= ,
∴MR= ,
Ⅰ.當∠ACQ=90°時,AQ為圓的直徑,
∴Q與R重合,
∴MQ=MR= ;
Ⅱ.如圖3,當∠QCD=90°時,
在Rt△QCP中,PQ=2PR= ,
∴MQ= ;
Ⅲ.如圖4,當∠QDC=90°時,
∵BM=1,MP=4,
∴BP= ,
∴DP= BP= ,
∵cos∠MPB= = ,
∴PQ= ,
∴MQ= ;
Ⅳ.如圖5,當∠AEQ=90°時,
由對稱性可得∠AEQ=∠BDQ=90°,
∴MQ= ;
綜上所述,MQ的值為 或 或 ;
②△ACG和△DEG的面積之比為 .
理由:如圖6,∵DM∥AF,
∴DF=AM=DE=1,
又由對稱性可得GE=GD,
∴△DEG是等邊三角形,
∴∠EDF=90°﹣60°=30°,
∴∠DEF=75°=∠MDE,
∴∠GDM=75°﹣60°=15°,
∴∠GMD=∠PGD﹣∠GDM=15°,
∴GMD=∠GDM,
∴GM=GD=1,
過C作CH⊥AB于H,
由∠BAC=30°可得CH= AC= AB=1=MG,AH= ,
∴CG=MH= ﹣1,
∴S△ACG= CG×CH= ,
∵S△DEG= ,
∴S△ACG:S△DEG= .
【解析】(1)根據(jù)三角形ABP是等腰三角形,可得∠B的度數(shù),再連接MD,根據(jù)MD為△PAB的中位線,可得∠MDB=∠APB=28°,進而得到 =2∠MDB=56°;(2)根據(jù)∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,進而得出AC=AB;(3)①記MP與圓的另一個交點為R,根據(jù)AM2+MR2=AR2=AC2+CR2 , 即可得到PR= ,MR= ,再根據(jù)Q為直角三角形銳角頂點,分四種情況進行討論:當∠ACQ=90°時,當∠QCD=90°時,當∠QDC=90°時,當∠AEQ=90°時,即可求得MQ的值為 或 或 ;②先判定△DEG是等邊三角形,再根據(jù)GMD=∠GDM,得到GM=GD=1,過C作CH⊥AB于H,由∠BAC=30°可得CH= AC=1=MG,即可得到CG=MH= ﹣1,進而得出S△ACG= CG×CH= ,再根據(jù)S△DEG= ,即可得到△ACG和△DEG的面積之比.
科目:初中數(shù)學 來源: 題型:
【題目】(1)畫出數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點:﹣4.5,﹣2,3,0,4;
(2)用“<”號將(1)中各數(shù)連接起來;
(3)直接填空:數(shù)軸上表示3和表示1的兩點之間的距離是_____,數(shù)軸上A點表示的數(shù)為4,B點表示的數(shù)為﹣2,則A、B之間的距離是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點A′和A,B′和B分別對應).若AB=1,反比例函數(shù)y= (k≠0)的圖象恰好經(jīng)過點A′,B,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),Rt△AOB中,∠A=90°,∠AOB=60°,OB=,∠AOB的平分線OC交AB于C,過O點做與OB垂直的直線ON.動點P從點B出發(fā)沿折線BC﹣CO以每秒1個單位長度的速度向終點O運動,運動時間為t秒,同時動點Q從點C出發(fā)沿折線CO﹣ON以相同的速度運動,當點P到達點O時P、Q同時停止運動.
(1)求OC、BC的長;
(2)設(shè)△CPQ的面積為S,求S與t的函數(shù)關(guān)系式;
(3)當P在OC上Q在ON上運動時,如圖(2),設(shè)PQ與OA交于點M,當t為何值時,△OPM為等腰三角形?求出所有滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上, 老師要求同學們利用三角板畫兩條平行線.老師說苗苗和小華兩位同學畫法都是正確的,兩位同學的畫法如下:
苗苗的畫法:
①將含30°角的三角尺的最長邊與直線a重合,另一塊三角尺最長邊與含30°角的三角尺的最短邊緊貼;
②將含30°角的三角尺沿貼合邊平移一段距離,畫出最長邊所在直線b,則b//a.
小華的畫法:
①將含30°角三角尺的最長邊與直線a重合,用虛線做出一條最短邊所在直線;
②再次將含30°角三角尺的最短邊與虛線重合,畫出最長邊所在直線b,則b//a.
請在苗苗和小華兩位同學畫平行線的方法中選出你喜歡的一種,并寫出這種畫圖的依據(jù).
答:我喜歡__________同學的畫法,畫圖的依據(jù)是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】公元前5世紀,畢達哥拉斯學派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù) ,導致了第一次數(shù)學危機, 是無理數(shù)的證明如下: 假設(shè) 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個正整數(shù)).于是( )2=( )2=2,所以,q2=2p2 . 于是q2是偶數(shù),進而q是偶數(shù),從而可設(shè)q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設(shè)不成立,所以, 是無理數(shù).
這種證明“ 是無理數(shù)”的方法是( )
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學歸納法
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運算題:
計算:
她發(fā)現(xiàn),這個算式反映的是前后兩部分的和,而這兩部分之間存在著某種關(guān)系,利用這種關(guān)系,他順利地解答了這道題。
(1)前后兩部分之間存在著什么關(guān)系?
(2)先計算哪步分比較簡便?并請計算比較簡便的那部分。
(3)利用(1)中的關(guān)系,直接寫出另一部分的結(jié)果。
(4)根據(jù)以上分析,求出原式的結(jié)果。
查看答案和解析>>
科目:
來源: 題型:【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
A型 | B型 | |
價格萬元臺 | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預算購買污水處理設(shè)備的資金不超過105萬元,你認為該公司有哪幾種購買方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com