想一想:將等式
32
=3
72
=7
反過來的等式3=
32
7=
72
還成立嗎?式子:9
1
27
=
92
27
=
3
4
1
8
=
42
8
=
2
成立嗎?仿照上面的方法,化簡(jiǎn)下列各式:(1)2
1
2
(2)11
2
11
(3)6
1
12
分析:根據(jù)公式當(dāng)a≥0時(shí),a=
a2
,把根號(hào)外的因式,平方后移入根號(hào)內(nèi)即可.
解答:解:成立,
(1)2
1
2
=
22
2
=
2
,
(2)11
2
11
=
112×2
11
=
22

(3)6
1
12
=
62
12
=
3
點(diǎn)評(píng):本題考查了二次根式的性質(zhì)與化簡(jiǎn)等知識(shí)點(diǎn),當(dāng)a≥0時(shí),a=
a2
,注意:①a是一個(gè)非負(fù)數(shù),②平方后移入根號(hào)內(nèi),③與根號(hào)內(nèi)的被開方數(shù)相乘.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書八年級(jí)數(shù)學(xué)上 題型:044

等式中找規(guī)律

  孫海洋是個(gè)愛動(dòng)腦筋的八年級(jí)學(xué)生,他特別喜歡數(shù)學(xué),一有空就看數(shù)學(xué)課外書,并琢磨書上的問題.有一次,他從一本書中看到了下面一個(gè)有趣的問題:

  仔細(xì)觀察下面4個(gè)等式:

  32=2+22+3

  42=3+32+4

  52=4+42+5

  62=5+52+6

  ……

  請(qǐng)寫出第5個(gè)等式,由此能發(fā)現(xiàn)什么規(guī)律?用公式將發(fā)現(xiàn)的規(guī)律表示出來.

  對(duì)這個(gè)問題,孫海洋感到很新奇,他認(rèn)真分析題目給出的4個(gè)等式,發(fā)現(xiàn)有以下一些結(jié)構(gòu)特征:

  (1)每個(gè)等式的左邊都是一個(gè)自然數(shù)的平方,等式的右邊都是3個(gè)數(shù)的和.

  (2)4個(gè)等式的左邊依次是32、42、52、62,它們的底數(shù)3、4、5、6是4個(gè)連續(xù)的自然數(shù),其大小均比所處等式的序號(hào)多2.

  (3)每個(gè)等式右邊的3個(gè)加數(shù)也有明顯的規(guī)律.

  第1個(gè)加數(shù)和第3個(gè)加數(shù)是兩個(gè)連續(xù)的自然數(shù),并且第3個(gè)加數(shù)等于該等式左邊平方數(shù)的底數(shù),第2個(gè)加數(shù)也是一個(gè)平方數(shù),底數(shù)等于第1個(gè)加數(shù).

  根據(jù)以上規(guī)律,孫海洋猜想第5個(gè)等式應(yīng)該是72=6+62+7.

  孫海洋進(jìn)一步歸納了這5個(gè)等式的規(guī)律,用公式表示為(n+1)2=n+n2+(n+1)…①其中n=2,3,…

  如果將①式右邊變形、左邊不變,那么可得(n+1)2=n2+2n+1…②

  等式②多么眼熟。∷痪褪峭耆椒焦降囊粋(gè)具體應(yīng)用嗎?由此可見,孫海洋同學(xué)歸納的規(guī)律是正確的.

想一想,當(dāng)n=0,1時(shí),等式①是否成立?當(dāng)n為負(fù)整數(shù)時(shí),等式①是否成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

想一想:將等式
32
=3
72
=7
反過來的等式3=
32
7=
72
還成立嗎?式子:9
1
27
=
92
27
=
3
4
1
8
=
42
8
=
2
成立嗎?仿照上面的方法,化簡(jiǎn)下列各式:(1)2
1
2
(2)11
2
11
(3)6
1
12

查看答案和解析>>

同步練習(xí)冊(cè)答案