【題目】如圖,的半徑為4,過(guò)圓外一點(diǎn)畫(huà)的兩條切線、為切點(diǎn),若,則陰影部分的面積是__________.(結(jié)果保留

【答案】

【解析】

連接OP,如圖,根據(jù)切線的性質(zhì)和切線長(zhǎng)定理得到∠PAO=PBO=90°,∠APO=30°,則根據(jù)四邊形內(nèi)角和得到∠AOB=180°-APB=120°,再在RtPAO中利用含30度的直角三角形三邊的關(guān)系得到,則,然后根據(jù)扇形面積公式,利用陰影部分的面積=S四邊形AOBP-S扇形AOB進(jìn)行計(jì)算.

連接OP,如圖,

PAPB是⊙O的兩條切線,

OAAPOBPB,OP平分∠APB,

∴∠PAO=PBO=90°, ,

∴∠AOB=180°-APB=180°-60°=120°,

RtPAO中,∵OA=4,∠APO=30°,

,

∴陰影部分的面積

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,漁船跟蹤魚(yú)群由西向東航行,到達(dá)A處時(shí),測(cè)得小島C位于它的北偏東53°方向,再航行后達(dá)到B處(),測(cè)得小島C位于它的北偏東45°方向.小島C的周?chē)?/span>內(nèi)有暗礁,如果漁船不改變航向繼續(xù)向東航行,請(qǐng)你通過(guò)計(jì)算說(shuō)明漁船有無(wú)觸礁的危險(xiǎn)?

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的三個(gè)頂點(diǎn)、.拋物線過(guò)、兩點(diǎn).

1)直接寫(xiě)出點(diǎn)的坐標(biāo),并求出拋物線的解析式;

2)動(dòng)點(diǎn)從點(diǎn)出發(fā).沿線段向終點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為秒.過(guò)點(diǎn)于點(diǎn)

①過(guò)點(diǎn)于點(diǎn),交拋物線于點(diǎn).當(dāng)為何值時(shí),線段最長(zhǎng)?

②連接.在點(diǎn)運(yùn)動(dòng)的過(guò)程中,判斷有幾個(gè)時(shí)刻使得是等腰三角形?請(qǐng)直接寫(xiě)出相應(yīng)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ABAC,∠BAC90°,點(diǎn)D在射線BC上(不與點(diǎn)B、點(diǎn)C重合),將線段ADA逆時(shí)針旋轉(zhuǎn)90°得到線段AE,作射線BA與射線CE,兩射線交于點(diǎn)F

1)若點(diǎn)D在線段BC上,如圖1,請(qǐng)直接寫(xiě)出CDEF的關(guān)系.

2)若點(diǎn)D在線段BC的延長(zhǎng)線上,如圖2,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.

3)在(2)的條件下,連接DE,GDE的中點(diǎn),連接GF,若tanAEC,AB,求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,點(diǎn)C為半徑OA的中點(diǎn),過(guò)點(diǎn)CCD⊥OA交弦AB于點(diǎn)E,連接BD,且DE=DB

1)判斷BD與⊙O的位置關(guān)系,并說(shuō)明理由;

2)若CD=15BE=10,tanA=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家家電下鄉(xiāng)政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).

1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出yx之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)

2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?

3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大邑縣某汽車(chē)出租公司有若干輛同一型號(hào)的貨車(chē)對(duì)外出租,每輛貨車(chē)的日租金實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每輛貨車(chē)的日租金比淡季上漲25%.據(jù)統(tǒng)計(jì),淡季該公司平均每天有10輛貨車(chē)未出租,日租金總收入為3200元;旺季所有的貨車(chē)每天能全部租出,日租金總收入為6000元.

1)求該出租公司這批對(duì)外出租的貨車(chē)共有多少輛?

2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車(chē)的日租金每上漲20元,每天租出去的貨車(chē)就會(huì)減少1輛,不考慮其它因素,該出租公司的日租金總收入最高是多少元?當(dāng)日租金總收入最高時(shí),每天出租貨車(chē)多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩位老師同住一小區(qū),該小區(qū)與學(xué)校相距.甲從小區(qū)步行去學(xué)校,出發(fā)分鐘后乙再出發(fā),乙從小區(qū)先騎公共自行車(chē),騎行若干米到達(dá)還車(chē)點(diǎn)后,立即步行走到學(xué)校.已知乙騎車(chē)的速度為/分,甲步行的速度比乙步行的速度每分鐘快.設(shè)甲步行的時(shí)間為(分),圖1中線段與折線分別表示甲、乙離小區(qū)的路程(米)與甲步行時(shí)間(分)的函數(shù)關(guān)系的圖象;圖2表示甲、乙兩人之間的距離(米)與甲步行時(shí)間 (分)的函數(shù)關(guān)系的圖象(不完整),根據(jù)圖1和圖2中所給的信息,解答下列問(wèn)題:

1)求甲步行的速度和乙出發(fā)時(shí)甲離開(kāi)小區(qū)的路程;

2)求直線的解析式;

3)在圖2中,畫(huà)出當(dāng)時(shí),關(guān)于的函數(shù)的大致圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案