【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖.
(1)畫出將△ABC向右平移2個單位得到△A1B1C1;
(2)畫出將△ABC繞點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2;
(3)求△A1B1C1與△A2B2C2重合部分的面積.
【答案】(1)作圖見解析;(2)作圖見解析;(3).
【解析】
試題分析:(1)將△ABC向右平移2個單位即可得到△A1B1C1.
(2)將△ABC繞點O順時針方向旋轉(zhuǎn)90°即可得到的△A2B2C2.
(3)B2C2與A1B1相交于點E,B2A2與A1B1相交于點F,如圖,求出直線A1B1,B2C2,A2B2,列出方程組求出點E、F坐標即可解決問題.
試題解析:(1)如圖,△A1B1C1為所作;
(2)如圖,△A2B2C2為所作;
(3)B2C2與A1B1相交于點E,B2A2與A1B1相交于點F,如圖,∵B2(0,1),C2(2,3),B1(1,0),A1(2,5),A2(5,0),∴直線A1B1為y=5x﹣5,直線B2C2為y=x+1,直線A2B2為,由解得:,∴點E(,),由解得:,∴點F(,),∴S△BEF==,∴△A1B1C1與△A2B2C2重合部分的面積為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,M是邊CD上一點,將△ADM沿直線AM對折,得到△ANM.
(1)當AN平分∠MAB時,求DM的長;
(2)連接BN,當DM=1時,求△ABN的面積;
(3)當射線BN交線段CD于點F時,求DF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=9,AD=4. E為CD邊上一點,CE=6. 點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE.設(shè)點P運動的時間為t秒.
⑴求AE的長;
⑵當t為何值時,△PAE為直角三角形?
⑶是否存在這樣的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片剪去四個大小形狀一樣的小正方形,然后將其中一個小正方形再按同樣的方法剪成四個小正方形,再將其中一個小正方形剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去.
(1)填表:
(2)如果剪了100次,共剪出多少個小正方形?
(3)如果剪n次,共剪出多少個小正方形?
(4)如果要剪出100個正方形,那么需要剪多少次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段垂直平分線上的點到這條線段的距離相等.理解這條性質(zhì)要注意兩點:①點一定在上; ②距離指的是點到線段的兩個的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿數(shù)軸做如下移動,第一次將點A向左移動3個單位長度到達點A1,第二次將點A1向右移動6個單位長度到達點A2,第三次將點A2向左移動9個單位長度到達點A3,…按照這種移動規(guī)律進行下去,第51次移動到點A51,那么點A51所表示的數(shù)為( 。
A. ﹣74 B. ﹣77 C. ﹣80 D .﹣83
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com