【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點(diǎn)M,BE丄CD于點(diǎn)E.
(1)求證:∠BME=∠MAB;
(2)求證:BM2=BEAB;
(3)若BE=,sin∠BAM=,求線段AM的長(zhǎng).
【答案】(1)見解析;(2)8
【解析】
試題
(1)如圖,連接OM,由CD切⊙O于點(diǎn)M證得∠BME和∠OMB互余;由AB是⊙O直徑證得∠AMO和∠OMB互余;從而可得∠BME=∠AMO,再證∠AMO=∠BAM即可得到結(jié)論;
(2)首先證∠BEM=∠BMA=90°,結(jié)合(1)中所得∠BME=∠BAM可證得△BEM∽△BMA,由此可得BE:BM=BM:AB,即BM2=BE·AB;
(3)由∠BME=∠BAM和sin∠BAM=,可得sin∠BME=,從而在Rt△BME中,可得BM=BE=6;然后在Rt△ABM中,由sin∠BAM=,可得AB=BM=10,最后在Rt△ABM中由勾股定理可求得AM的長(zhǎng).
試題解析:
(1)如圖,連接OM.
∵直線CD切⊙O于點(diǎn)M,
∴∠OMD=90°
∴∠BME+∠OMB=90°.
∵AB為⊙O的直徑,
∴∠AMB=90°.
∴∠AMO+∠OMB=90°.
∴∠BME=∠AMO.
∵OA=OM,
∴∠MAB=∠AMO.
∴∠BMA=∠MAB.
(2)由(1)知∠BME=∠MAB.
∵BECD,
∴∠BEM=∠AMB=90°.
∴△BME∽△BAM.
∴ ,
∴BM2=BE·AB.
(3)由(1)知∠BME=∠MAB.
∵sin∠BAM=,
∴sin∠BME=.
在Rt△BEM中,BE=,
∴sin∠BAM==,
∴BM=BE=6.
在Rt△ABM中, sin∠BAM=,
∴sin∠BAM==,
∴AB=BM=10.
在Rt△ABM中,根據(jù)勾股定理,得AM=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公路檢測(cè)中心在一事故多發(fā)地帶安裝了一個(gè)測(cè)速儀,檢測(cè)點(diǎn)設(shè)在距離公路10m的A處,測(cè)得一輛汽車從B處行駛到C處所用的時(shí)間為0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之間的距離;(保留根號(hào))
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請(qǐng)說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯(cuò)誤的是
A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上
C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次
D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字6,-2,7的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請(qǐng)你用畫樹狀圖的方法,求下列事件的概率:
(1)兩次取出小球上的數(shù)字相同;
(2)兩次取出小球上的數(shù)字之和大于10.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀探索:“任意給定一個(gè)矩形A,是否存在另一個(gè)矩形B,它的周長(zhǎng)和面積分別是已知矩形周長(zhǎng)和面積的一半?”(完成下列空格)
(1)當(dāng)已知矩形A的邊長(zhǎng)分別為6和1時(shí),小亮同學(xué)是這樣研究的:
設(shè)所求矩形的兩邊分別是x和y,由題意得方程組:,消去y化簡(jiǎn)得:2x2﹣7x+6=0,
∵△=49﹣48>0,
∴x1=_____,x2=_______,
∴滿足要求的矩形B存在.
(2)如果已知矩形A的邊長(zhǎng)分別為2和1,請(qǐng)你仿照小亮的方法研究是否存在滿足要求的矩形B.
(3)如果矩形A的邊長(zhǎng)為m和n,請(qǐng)你研究滿足什么條件時(shí),矩形B存在?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),拋物線與軸相交于點(diǎn).與軸交于點(diǎn),點(diǎn),在直線上.
(1)當(dāng)隨著的增大而增大時(shí),求自變量的取值范圍;
(2)將拋物線向左平移個(gè)單位,記平移后隨著的增大而增大的部分為,直線向下平移個(gè)單位,當(dāng)平移后的直線與有公共點(diǎn)時(shí),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P是⊙O上一點(diǎn),過點(diǎn)P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動(dòng)點(diǎn)A、B(不與P,Q重合),連接AP、BP. 若∠APQ=∠BPQ.
(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑;
(2)如圖2,選接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,若∠NOP+2∠OPN=90°,探究直線AB與ON的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店以每件40元的價(jià)格購進(jìn)一批襯衫,在試銷過程中發(fā)現(xiàn):每月銷售量y(件)與銷售單價(jià)x(x為正整數(shù))(元)之間符合一次函數(shù)關(guān)系,當(dāng)銷售單價(jià)為55元時(shí),月銷售量為140件;當(dāng)銷售單價(jià)
為70元時(shí),月銷售量為80件.
(1)求y與x的函數(shù)關(guān)系式;
(2)如果每銷售一件襯衫需支出各種費(fèi)用1元,設(shè)服裝店每月銷售該種襯衫獲利為w元,求w與x之間的函數(shù)關(guān)系式,并求出銷售單價(jià)定為多少元時(shí),商場(chǎng)獲利最大,最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com