如圖1,在ABCD中,AH⊥DC,垂足為H,AB=,AD=7,AH=. 現(xiàn)有兩個動點E、F同時從點A出發(fā),分別以每秒1個單位長度、每秒3個單位長度的速度沿射線AC方向勻速運動. 在點E、F運動過程中,以EF為邊作等邊△EFG,使△EFG與△ABC在射線AC的同側(cè),當(dāng)點E運動到點C時,E、F兩點同時停止運動. 設(shè)運轉(zhuǎn)時間為t秒.

(1)求線段AC的長;

(2)在整個運動過程中,設(shè)等邊△EFG與△ABC重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;

(3)當(dāng)?shù)冗叀鱁FG的頂點E到達點C時,如圖2,將△EFG繞著點C旋轉(zhuǎn)一個角度. 在旋轉(zhuǎn)過程中,點E與點C重合,F(xiàn)的對應(yīng)點為F′,G的對應(yīng)點為G′. 設(shè)直線F′G′與射線DC、射線AC分別相交于M、N兩點.試問:是否存在點M、N,使得△CMN是以∠MCN為底角的等腰三角形?若存在,請求出線段CM的長度;若不存在,請說明理由.


(1)7;(2);(3)存在,.

【解析】

(3)存在.

如圖2,當(dāng)?shù)冗叀鱁FG的頂點E到達點C時,AE=AC=7,AF=21,EF=14.

△EFG繞點C旋轉(zhuǎn)過程中,以∠MCN為底角的等腰三角形△CMN有兩種情況:

當(dāng)∠CMN為等腰△CMN的另一底角時,如答圖1,

過點C作CI⊥MN于點I,過N作NJ⊥CM于點J.

在△CMI中,由勾股定理得,即,

二者聯(lián)立,解得,∴.

②當(dāng)∠CNM為等腰△CMN的另一底角時,如答圖2,

過點C作CI⊥MN于點I,過N作NJ⊥CM于點J.

在等邊△CG′I中,易得.

考點:1.雙動點和面動旋轉(zhuǎn)問題;2.勾股定理;3. 線段垂直平分線的性質(zhì);4.等邊、腰三角形的性質(zhì);5.由實際問題列函數(shù)關(guān)系式;6. 旋轉(zhuǎn)的性質(zhì);7.相似三角形的判定和性質(zhì);8. 等腰三角形存在性問題;9.分類思想的應(yīng)用.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知拋物線的頂點在坐標(biāo)軸上.

(1)求的值;

(2)時,拋物線向下平移個單位后與拋物線關(guān)于軸對稱,且過點,求的函數(shù)關(guān)系式;

(3)時,拋物線的頂點為,且過點.問在直線 上是否存在一點使得△的周長最小,如果存在,求出點的坐標(biāo), 如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標(biāo);

(2)判斷△CDB的形狀并說明理由;

(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連結(jié)DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).

(1)當(dāng)點P在線段DE上運動時,線段DP的長為______cm,(用含t的代數(shù)式表示).

(2)當(dāng)點N落在AB邊上時,求t的值.

(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm²),求S與t的函數(shù)關(guān)系式.

(4)連結(jié)CD.當(dāng)點N于點D重合時,有一點H從點M出發(fā),在線段MN上以2.5cm/s的速度沿M-N-M連續(xù)做往返運動,直至點P與點E重合時,點H停止往返運動;當(dāng)點P在線段EB上運動時,點H始終在線段MN的中心處.直接寫出在點P的整個運動過程中,點H落在線段CD上時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知:如圖一,拋物線與x軸正半軸交于A、B兩點,與y軸交于點C,直線經(jīng)過A、C兩點,且AB=2.

(1)求拋物線的解析式;

(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當(dāng)點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒 ;設(shè),當(dāng)t 為何值時,s有最小值,并求出最小值。

(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線經(jīng)過A、B兩點。若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連結(jié)PA、PB.設(shè)直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線經(jīng)過點A,B及原點O,頂點為C,直線OB為,點P是拋物線上的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P,M,A為頂點的三角形與△BOC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,O為坐標(biāo)原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,OB=,BF=BC。過點F作EF∥OB,交OA于點,點P為直線EF上的一個動點,連接PA,PO。若以P、O、A為頂點的三角形是直角三角形,請求出所有點P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,AB=AC,D是BA延長線上的一點,點E在AC上,且AE=CE。

(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)。

①作∠DAC的平分線AM。②連接BE并延長交AM于點F。

(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

同步練習(xí)冊答案