【題目】如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)判斷直線BE與拋物線交點的個數(shù);
(3)求證:CD垂直平分BE;
(4)若P是該拋物線上的一個動點,是否存在這樣的點P,使得△PBE是等腰直角三角形,且∠PEB=90°?若存在,試求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:∵點B(﹣2,m)在直線上y=﹣2x﹣1上,
∴m=﹣2×(﹣2)﹣1=3,
∴B(﹣2,3).
∵拋物線經(jīng)過原點O和點A,對稱軸為x=2,
∴點A的坐標(biāo)為(4,0).
設(shè)所求的拋物線對應(yīng)函數(shù)關(guān)系式為y=ax(x﹣4),
將點B(﹣2,3)代入上式,
3=﹣2a×(﹣2﹣4),解得:a= ,
∴所求的拋物線對應(yīng)的函數(shù)關(guān)系式為y= x(x﹣4)= x2﹣x
(2)
解:將y=﹣2x﹣1代入y= x2﹣x,得: x2﹣x=﹣2x﹣1,
整理得:x2+4x+4=0,
∴△=42﹣4×1×4=0,
∴直線BE與拋物線只有一個交點
(3)
解:證明:當(dāng)x=2時,y=﹣2x﹣1=﹣5,
∴E(2,﹣5).
∵C(2,0),B(﹣2,3),
∴CE=0﹣(﹣5)=5,CB= =5,
∴CE=CB.
∵D(0,﹣1),B(﹣2,3),E(2,﹣5),
∴BD= =2 ,DE= =2 ,
∴BD=DE,
∴CD垂直平分BE
(4)
解:不存在,理由如下:
過點E作ME⊥BE交x軸于點M,過點B作BN⊥直線x=2于點N,如圖所示.
∵B(﹣2,3),E(2,﹣5),
∴BN=2﹣(﹣2)=4,EN=3﹣(﹣5)=8,CE=0﹣(﹣5)=5.
∵∠BEN+∠EBN=90°,∠BEN+∠MEC=90°,
∴∠EBN=∠MEC,
∴△EBN∽△MEC,
∴ ,
∴MC=10,
∴M(12,0).
設(shè)直線EM的函數(shù)關(guān)系式為y=kx+b(k≠0),
將E(2,﹣5)、M(12,0)代入y=kx+b,
,解得: ,
∴直線EM的函數(shù)關(guān)系式為y= x﹣6.
將y= x﹣6代入y= x2﹣x,得: x2﹣x= x﹣6,
整理得:x2﹣6x+24=0,
∴△=(﹣6)2﹣4×1×24=﹣60<0,
∴直線EM與拋物線無交點,
∴不存在滿足條件的點P.
【解析】(1)根據(jù)點B的橫坐標(biāo)利用一次函數(shù)圖象上點的坐標(biāo)特征即可求出點B的坐標(biāo),根據(jù)點O的坐標(biāo)結(jié)合拋物線的對稱軸即可找出點A的坐標(biāo),設(shè)拋物線的函數(shù)關(guān)系式為y=ax(x﹣4),代入點B的坐標(biāo)求出a值即可;(2)將直線BE的函數(shù)關(guān)系式代入拋物線的函數(shù)關(guān)系式中可得出關(guān)于x的一元二次方程,由根的判別式△=0,即可得出直線BE與拋物線只有一個交點;(3)根據(jù)點E的橫坐標(biāo)利用一次函數(shù)圖象上點的坐標(biāo)特征即可求出點E的坐標(biāo),結(jié)合點B、C的坐標(biāo)利用兩點間的距離公式,即可得出CE=CB,再根據(jù)點B、D、E的坐標(biāo)利用兩點間的距離公式,即可得出BD=DE,根據(jù)等腰三角形的三線合一即可證出CD垂直平分BE;(4)過點E作ME⊥BE交x軸于點M,過點B作BN⊥直線x=2于點N,則△EBN∽△MEC,根據(jù)相似三角形的性質(zhì)即可找出點M的坐標(biāo),由點E、M的坐標(biāo)利用待定系數(shù)法可求出直線EM的函數(shù)關(guān)系式,將其代入拋物線的函數(shù)關(guān)系式中可得出關(guān)于x的一元二次方程,由根的判別式△=﹣60<0,即可得出直線EM與拋物線無交點,由此得出不存在滿足條件的點P.
【考點精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則cos∠AEF的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.
(1)一個角的平分線 這個角的“巧分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN=α,且射線PQ是∠MPN的“巧分線”,則∠MPQ= ;(用含α的代數(shù)式表示出所有可能的結(jié)果)
【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點P從PN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當(dāng)PQ與PN成180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.
(3)當(dāng)t為何值時,射線PM是∠QPN的“巧分線”;
(4)若射線PM同時繞點P以每秒5°的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當(dāng)射線PQ是∠MPN的“巧分線”時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)計算:(3﹣π)0﹣ +|3﹣ |+(tan30°)﹣1
(2)定義新運算:對于任意實數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運算. 比如:2⊕5=2×(2﹣5)+1
=2×(﹣3)+1
=﹣6+1
=﹣5
若3⊕x的值小于13,求x的取值范圍,并在如圖所示的數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】認真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
探究1:如圖l,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90+∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線
∴∠1=∠ABC, ∠2=∠ACB
∴∠l+∠2=(∠ABC+∠ACB)= (180-∠A)= 90-∠A
∴∠BOC=180-(∠1+∠2) =180-(90-∠A)=90+∠A
(1)探究2;如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
(2)探究3:如圖3中, O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=6,AB=5,則AE的長為( )
A.4
B.6
C.8
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)成良好的早鍛煉習(xí)慣,對學(xué)生的學(xué)習(xí)和生活非常有益某中學(xué)為了了解七年級學(xué)生的早鍛煉情況,校政教處在七年級隨機抽取了部分學(xué)生,并對這些學(xué)生通常情況下一天的早鍛煉時間分鐘進行了調(diào)查現(xiàn)把調(diào)查結(jié)果分為A,B,C,D四組,如下表所示;同時,將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖.
組別 | 早鍛煉時間 |
A | |
B | |
C | |
D |
請根據(jù)以上提供的信息,解答下列問題:
扇形統(tǒng)計圖中D所在扇形的圓心角度數(shù)為______;
補全頻數(shù)分布直方圖;
已知該校七年級共有1200名學(xué)生,請你估計這個年級學(xué)生中有多少人一天早鍛煉的時間不少于20分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2bx﹣3(b為常數(shù),b<0).
(1)拋物線y=x2﹣2bx﹣3總經(jīng)過一定點,定點坐標(biāo)為;
(2)拋物線的對稱軸為直線x=(用含b的代數(shù)式表示),位于y軸的
側(cè).
(3)思考:若點P(﹣2,﹣1)在拋物線y=x2﹣2bx﹣3上,拋物線與反比例函數(shù)y= (k>0,x>0)的圖象在第一象限內(nèi)交點的橫坐標(biāo)為a,且滿足2<a<3,試確定k的取值范圍.
(4)探究:設(shè)點A是拋物線上一點,且點A的橫坐標(biāo)為m,以點A為頂點做邊長為1的正方形ABCD,AB⊥x軸,點C在點A的右下方,若拋物線與CD邊相交于點P(不與D點重合且不在y軸上),點P的縱坐標(biāo)為﹣3,求b與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點A1 , 得∠A1;∠A1BC和∠A1CD的平分線交于點A2 , 得∠A2;…∠A2016BC和∠A20l6CD的平分線交于點A2017 , 則∠A2017=°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com