【題目】如圖,在中,,,點為腰中點,點在底邊上,且,則的長為______.
【答案】
【解析】
過點D作DF⊥AB于F,根據(jù)等腰三角形的性質(zhì)和已知條件可得:,∠B=45°,根據(jù)勾股定理求出AD和AB,根據(jù)等腰直角三角形的判定即可證出:△DFB是等腰直角三角形和BF的長,然后根據(jù)相似三角形的判定可得:△ADE∽△AFD,根據(jù)相似三角形的性質(zhì)列出比例式,即可求出AE,從而求出BE.
解:過點D作DF⊥AB于F
∵,,點為腰中點,
∴,∠B=45°
根據(jù)勾股定理可得:AD=,AB=
∵,DF⊥AB
∴△DFB是等腰直角三角形,BF=,∠ADE=∠AFD
∴AF=AB-BF=
∵∠DAE=∠FAD
∴△ADE∽△AFD
∴
即:
解得:
∴
故答案為: .
科目:初中數(shù)學 來源: 題型:
【題目】“我要上春晚”進入決賽階段,最終將有甲、乙、丙、丁4名選手進行決賽的終極較量,決賽分3期進行,每期比賽淘汰1名選手,最終留下的歌手即為冠軍.假設每位選手被淘汰的可能性都相等.
(1)甲在第1期比賽中被淘汰的概率為 ;
(2)用樹狀圖法或表格法求甲在第2期被淘汰的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點C,與y軸交于點B,拋物線經(jīng)過B、C兩點.
(1)求拋物線的解析式;
(2)如圖,點E是拋物線上的一動點(不與B,C兩點重合),△BEC面積記為S,S取何值時,對應的點E有且只有兩個?
(3)直線x=2交直線BC于點M,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當AE=1時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=30°,將△ABC沿AC翻折得到△ACD,延長AD交BC的延長線于點E,則△ABE的面積為( )
A.B.C.3D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組根據(jù)學習函數(shù)的經(jīng)驗,對分段函數(shù)y=的圖象與性質(zhì)進了探究,請補充完整以下的探索過程.
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | ﹣1 | 0 | 1 | 0 | ﹣3 | … |
(1)填空:a= .b= .
(2)①提上述表格補全函數(shù)圖象;②該函數(shù)圖象是關(guān)于 對稱的 (橫線上填軸對稱或中心對稱)圖形.
(3)若直線y=x+t與該函數(shù)圖象有三個交點,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A,B的坐標分別為(1,0),(2,0).若二次函數(shù)y=x2+(a﹣3)x+3的圖象與線段AB只有一個交點,則a的取值范圍是_______________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,其中圖①有3個小菱形,圖②有7個小菱形,圖③有13個小菱形……請根據(jù)排列規(guī)律完成下列問題:
(1)請寫出圖⑤中小菱形的個數(shù);
(2)根據(jù)表中規(guī)律猜想,圖中小菱形的個數(shù)與的關(guān)系式(不用說理);
(3)是否存在一個圖形恰好由91個菱形組成?若存在,求出圖形的序號;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com