如圖,直線AB、CD相交于點(diǎn)O,OE⊥AB,垂足為O,OF平分∠AOE,∠1=15°,則下列結(jié)論中不正確的是( 。
分析:根據(jù)垂直的定義可得∠AOE=90°,再根據(jù)角平分線的定義求出∠2=45°,根據(jù)對(duì)頂角相等可得∠1=∠3,根據(jù)互余的定義求出∠EOD與∠3互為余角,根據(jù)平角等于180°列式計(jì)算即可求出∠FOD=120°.
解答:解:A、∵OE⊥AB,
∴∠AOE=90°,
∵OF平分∠AOE,
∴∠2=
1
2
∠AOE=
1
2
×90°=45°,故本選項(xiàng)錯(cuò)誤;
B、∵∠1、∠3是對(duì)頂角,
∴∠1=∠3,故本選項(xiàng)錯(cuò)誤;
C、∵∠EOD+∠1=∠BOE=90°,
∴∠EOD+∠3=90°,
∴∠EOD與∠3互為余角,故本選項(xiàng)錯(cuò)誤;
D、∠FOD=180°-∠1-∠2=180°-15°-45°=120°,故本選項(xiàng)正確.
故選D.
點(diǎn)評(píng):本題考查了垂線的定義,余角的定義,對(duì)頂角相等的性質(zhì),熟記概念,準(zhǔn)確識(shí)圖求出各角的度數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過(guò)點(diǎn)O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來(lái)).
(2)圖中除直角相等外,還有相等的角,請(qǐng)寫出三對(duì):
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請(qǐng)你認(rèn)真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對(duì)頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線AB、CD、EF相交于點(diǎn)O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線AB,CD相交于O點(diǎn),EO⊥CD,垂足為O點(diǎn),若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案