【題目】如圖,已知直線分別交軸、軸于、兩點,拋物線經(jīng)過、兩點,點是拋物線與軸的另一個交點(與點不重合).

1)求拋物線的解析式;

2)在拋物線的對稱軸上求一點,使的周長最小,并求出最小周長和點的坐標(biāo);

3)在拋物線的對稱軸上,是否存在點M,使為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標(biāo).

【答案】1 ;(2) ;(3)存在,,,,.

【解析】

1)由直線解析式可求得A、B兩點的坐標(biāo),根據(jù)待定系數(shù)法可求得拋物線解析式;
2)連接BC,直線BC與對稱軸的交點即為點P.求出直線BC的解析式,求出點P的坐標(biāo),即可求解.

3)分MA=AB,MB=AB,MB=MA三種情況進(jìn)行討論.

解:(1)直線

,

A,B兩點的坐標(biāo)分別代入得:

∴拋物線的解析式為

(2)連接BC,直線BC與對稱軸的交點即為點P.易求直線BC的解析式為,拋物線對稱軸為直線,當(dāng)P(-1,-2)時最小周長為.

3)存在,理由如下:

拋物線的對稱軸為:

①當(dāng)MA=AB時,∵OA=1,OB=3

,

②當(dāng)MB=AB時, (不合題意)

,

③當(dāng)MB=MA時,

,

故共存在四個點

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°24°的桌面有利于學(xué)生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計圖如圖1,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC30 cm.

(1)如圖2,當(dāng)∠BAC24°時,CDAB,求支撐臂CD的長;

(2)如圖3,當(dāng)∠BAC12°時,求AD的長.(結(jié)果保留根號)

(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點AB3,0),與y軸交于點C03).

1)求拋物線的解析式;

2)若點M是拋物線上在x軸下方的動點,過MMNy軸交直線BC于點N,求線段MN的最大值;

3E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,BE,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A2,0)、B3,1)、C1,3).

1)將ABC沿x軸負(fù)方向移動2個單位長度至A1B1C1,畫圖并寫出點C1的坐標(biāo);

2)以點A1為旋轉(zhuǎn)中心,將A1B1C1逆時針方向旋轉(zhuǎn)90°得到A2B2C2,畫圖并寫出點C2的坐標(biāo);

3)以BC1、C2為頂點的三角形是   三角形,其外接圓的半徑R   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB為定點,定直線l//AB,Pl上一動點.點M,N分別為PA,PB的中點,對于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MNAB之間的距離;

⑤∠APB的大。

其中會隨點P的移動而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五端午節(jié)來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當(dāng)售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.

1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?

3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五端午節(jié)來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當(dāng)售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.

1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?

3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)某海域有A,B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A10)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標(biāo);

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖冢埱蟪M點的坐標(biāo)和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案