【題目】用科學(xué)記數(shù)法表示:0.0000076_____

【答案】7.6×106

【解析】

絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.

0.00000767.6×106,

故答案為7.6×106

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖Rt△AOB∽△DOC,∠AOB=∠COD=90°,M為OA的中點(diǎn),OA=6,OB=8,將△COD繞O點(diǎn)旋轉(zhuǎn),連接AD,CB交于P點(diǎn),連接MP,則MP的最大值(  )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知命題“關(guān)于x的一元二次方程x2+bx+1=0,當(dāng)b<0時(shí)必有實(shí)數(shù)解”,能說明這個(gè)命題是假命題的一個(gè)反例可以是(
A.b=﹣1
B.b=2
C.b=﹣2
D.b=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣籌備20周年縣慶,園林部門決定利用3 490盆甲種花卉和2 950盆乙種花卉搭配A,B兩種園藝造型共50個(gè)擺放在迎賓大道兩側(cè),已知搭配一個(gè)A種造型需甲種花卉80盆,乙種花卉40盆;搭配一個(gè)B種造型需甲種花卉50盆,乙種花卉90盆.
(1)某校九年級(jí)(1)班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問符合題意的搭配方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來;
(2)若搭配一個(gè)A種造型的成本是800元,搭配一個(gè)B種造型的成本是960元,試說明(1)中哪種方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題.
(1)化簡:(a+b)2+(a﹣b)(a+b)﹣2ab;
(2)解不等式:5(x﹣2)﹣2(x+1)>3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2﹣2ax﹣3a與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,BO=CO.

(1)求拋物線的解析式;

(2)點(diǎn)P是第一象限拋物線上的一動(dòng)點(diǎn),連接AP,交y軸于點(diǎn)D,連接CP,設(shè)P點(diǎn)橫坐標(biāo)為t,△CDP的面積為S,求S與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,過點(diǎn)P作PE⊥x軸于點(diǎn)E,連接PB,過點(diǎn)A作AF⊥PB于點(diǎn)F,交線段PE于點(diǎn)G,若點(diǎn)H在x軸負(fù)半軸上,PH=2GE,點(diǎn)M(0,m)在y軸正半軸上,連接PM、PH,∠HPM=2∠BHP,PH=2PM,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小方格都是邊長為1的小正方形.

(1)△ABC向右平移6個(gè)單位,畫出平移后的△A1B1C1;

(2)將△A1B1C1繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2

(3)連接A1B、A2B、A1A2,并直接寫出△BA1A2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F.

(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=3,AB=4,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點(diǎn),與反比例函數(shù)的圖象相交于C,D兩點(diǎn),分別過C,D兩點(diǎn)作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個(gè)結(jié)論:

①△CEF與△DEF的面積相等;

②△AOB∽△FOE;

③△DCE≌△CDF;

④AC=BD.

其中正確的結(jié)論是(  )

A. ①② B. ①②③ C. ①②③④ D. ②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案