【題目】【探索發(fā)現(xiàn)】
如圖①,是一張直角三角形紙片,∠B=90°,小明想從中剪出一個以∠B為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時,所得的矩形的面積最大,隨后,他通過證明驗證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為 .
【拓展應(yīng)用】
如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數(shù)式表示)
【靈活應(yīng)用】
如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
【實際應(yīng)用】
如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.
【答案】詳見解析.
【解析】試題解分析:【探索發(fā)現(xiàn)】:由中位線知EF=BC、ED=AB、由可得;
【拓展應(yīng)用】:由△APN∽△ABC知,可得PN=a-PQ,設(shè)PQ=x,由S矩形PQMN=PQPN═-(x-)2+,據(jù)此可得;
【靈活應(yīng)用】:添加如圖1輔助線,取BF中點I,FG的中點K,由矩形性質(zhì)知AE=EH=20、CD=DH=16,分別證△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,從而判斷出中位線IK的兩端點在線段AB和DE上,利用【探索發(fā)現(xiàn)】結(jié)論解答即可;
【實際應(yīng)用】:延長BA、CD交于點E,過點E作EH⊥BC于點H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,繼而求得BE=CE=90,可判斷中位線PQ的兩端點在線段AB、CD上,利用【拓展應(yīng)用】結(jié)論解答可得.
試題解析:【探索發(fā)現(xiàn)】
∵EF、ED為△ABC中位線,
∴ED∥AB,EF∥BC,EF=BC,ED=AB,
又∠B=90°,
∴四邊形FEDB是矩形,
則;
【拓展應(yīng)用】
∵PN∥BC,
∴△APN∽△ABC,
∴,即,
∴PN=a-PQ,
設(shè)PQ=x,
則S矩形PQMN=PQPN=x(a-x)=-x2+ax=-(x-)2+,
∴當(dāng)PQ=時,S矩形PQMN最大值為.
【靈活應(yīng)用】
如圖1,延長BA、DE交于點F,延長BC、ED交于點G,延長AE、CD交于點H,取BF中點I,FG的中點K,
由題意知四邊形ABCH是矩形,
∵AB=32,BC=40,AE=20,CD=16,
∴EH=20、DH=16,
∴AE=EH、CD=DH,
在△AEF和△HED中,
∵ ,
∴△AEF≌△HED(ASA),
∴AF=DH=16,
同理△CDG≌△HDE,
∴CG=HE=20,
∴BI==24,
∵BI=24<32,
∴中位線IK的兩端點在線段AB和DE上,
過點K作KL⊥BC于點L,
由【探索發(fā)現(xiàn)】知矩形的最大面積為×BGBF=×(40+20)×(32+16)=720,
答:該矩形的面積為720;
【實際應(yīng)用】
如圖2,延長BA、CD交于點E,過點E作EH⊥BC于點H,
∵tanB=tanC=,
∴∠B=∠C,
∴EB=EC,
∵BC=108cm,且EH⊥BC,
∴BH=CH=BC=54cm,
∵tanB==,
∴EH=BH=×54=72cm,
在Rt△BHE中,BE==90cm,
∵AB=50cm,
∴AE=40cm,
∴BE的中點Q在線段AB上,
∵CD=60cm,
∴ED=30cm,
∴CE的中點P在線段CD上,
∴中位線PQ的兩端點在線段
由【拓展應(yīng)用】知,矩形PQMN的最大面積為BCEH=1944cm2,
答:該矩形的面積為1944cm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個長方形操場的四角都設(shè)計一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場的長為a米,寬為b米.
(1)請列式表示操場空地的面積;
(2)若休閑廣場的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場空地的面積.(π取 3.14,計算結(jié)果保留 0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題的是( 。
A. 四個角都相等的四邊形是矩形
B. 兩組對邊分別相等的四邊形是平行四邊形
C. 對角線互相垂直且相等的四邊形是正方形
D. 兩條對角線互相垂直平分的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復(fù)上述過程,下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.64 | 0.58 | 0.605 | 0.601 |
(1)請將表中的數(shù)據(jù)補充完整,
(2)請估計:當(dāng)n很大時,摸到白球的概率約是 .(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=DC,E,F,G,H分別是AD,BC,BD,AC的中點.
(1)證明:EG=EH;(2)證明:四邊形EHFG是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )
A. B. 0 C. 3 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀的傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校園團委組織八年級100名學(xué)生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進行整理,得到下列不完整的統(tǒng)計圖表:
請根據(jù)所給信息,解答以下問題:
(1)表中 ; ;
(2)請計算扇形統(tǒng)計圖中組對應(yīng)的圓心角的度數(shù);
(3)已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機選出兩名參加市級比賽,請用列舉法或樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)據(jù):80,88,85,85,83,83,84.下列說法中錯誤的有( )
A、這組數(shù)據(jù)的平均數(shù)是84;
B、這組數(shù)據(jù)的眾數(shù)是85;
C、這組數(shù)據(jù)的中位數(shù)是84;
D、這組數(shù)據(jù)的方差是36.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com