【題目】如圖1,在矩形ABCD中,DB=6,AD=3,在RtPEF中,∠PEF=90°,EF=3,PF=6,PEF(點(diǎn)F和點(diǎn)A重合)的邊EF和矩形的邊AB在同一直線上.現(xiàn)將RtPEFA以每秒1個(gè)單位的速度向射線AB方向勻速平移,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,

解答下列問(wèn)題:

(1)如圖1,連接PD,填空:∠PFD= ,四邊形PEAD的面積是 ;

(2)如圖2,當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),求 PEF運(yùn)動(dòng)時(shí)間t的值;

(3)在運(yùn)動(dòng)的過(guò)程中,設(shè)PEFABD重疊部分面積為S,請(qǐng)求出St的函數(shù)關(guān)系式.

【答案】(1)300,;(2);(3)見解析.

【解析】(1)根據(jù)銳角三角形函數(shù)可求出角的度數(shù),然后根據(jù)勾股定理求出PE的長(zhǎng),再根據(jù)梯形的面積公式求解.

(2)當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),PE∥DA,由EF=3,PF=6,可得∠EPD=∠ADF=30°,用三角函數(shù)計(jì)算可得AF=t=;

(3)根據(jù)題意,分三種情況:①當(dāng)0≤t<時(shí),②≤t<3時(shí),③3≤t≤6時(shí),根據(jù)三角形、梯形的面積的求法,求出S與t的函數(shù)關(guān)系式即可.

(1)∵RtPEF中,∠PEF=90°,EF=3,PF=6

∴sin∠P=

∴∠P=30°

∵PE∥AD

∴∠PAD=300,

根據(jù)勾股定理可得PE=3,

所以S四邊形PEAD=×(3+3)×3=

(2)當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),PE∥DA,由EF=3,PF=6,得∠EPF=∠ADF=30°,

Rt△ADF中,由AD=3,得AF=,所以t=

(3)分三種情況討論:

①當(dāng)0≤t<時(shí), PF交AD于Q,∵AF=t,AQ=t,∴S=×t×t=

②當(dāng)≤t<3時(shí),PF交BD于K,作KH⊥AB于H,∵AF=t,∴BF=3-t,S△ABD=,

∵∠FBK=∠FKB,∴FB=FK=3-t,KH=KF×sin600=,∴S=S△ABD﹣S△FBK =

③當(dāng)3≤t≤3時(shí),PE與BD交O,PF交BD于K,∵AF=t,∴AE=t-3,BF=3-t,

BE=3-t+3,OE=BE×tan300=,∴S=。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,對(duì)角線的垂直平分線相交于點(diǎn),與相交于點(diǎn),連接,.求證:四邊形是菱形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l:y=-x,點(diǎn)A1坐標(biāo)為(-4,0).過(guò)點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫弧交x軸負(fù)半軸于點(diǎn)A2,再過(guò)點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸負(fù)半軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A2018的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知表示5-2之差的絕對(duì)值,實(shí)際上也可理解為5-2兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離請(qǐng)?jiān)囍剿鳎?/span>

1)找出所有符合條件的整數(shù),使,這樣的整數(shù)是__________

2)利用數(shù)軸找出,當(dāng)時(shí),的值是__________;

3)利用數(shù)軸找出,當(dāng)取最小值時(shí),的范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)七年級(jí)開展演講比賽,學(xué)校決定購(gòu)買一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的筆記本和鋼筆.筆記本定價(jià)為每本20元,鋼筆每支定價(jià)5元,經(jīng)洽談后,甲店每買一本筆記本贈(zèng)一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.七年級(jí)需筆記本20本,鋼筆若干支(不小于20支).問(wèn):

1)如果購(gòu)買鋼筆不小于20)支,則在甲店購(gòu)買需付款 ______ 元,在乙店購(gòu)買需付款 _______________ 元.(用x的代數(shù)式表示)

2)當(dāng)購(gòu)買鋼筆多少支時(shí),在兩店購(gòu)買付款一樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)探究新知:如圖1,已知的面積相等,試判斷的位置關(guān)系,并說(shuō)明理由.

2)結(jié)論應(yīng)用:

如圖2,點(diǎn),在反比例函數(shù)的圖像上,過(guò)點(diǎn)軸,過(guò)點(diǎn)軸,垂足分別為,,連接.試證明:.

中的其他條件不變,只改變點(diǎn),的位置如圖3所示,請(qǐng)畫出圖形,判斷的位置關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《教育導(dǎo)報(bào)》記者就四川省農(nóng)村中小學(xué)教師閱讀狀況進(jìn)行了一次問(wèn)卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了教師每年閱讀書籍?dāng)?shù)量的統(tǒng)計(jì)圖(不完整).設(shè)x表示閱讀書籍的數(shù)量(x為正整數(shù),單位:本).其中A:1≤x≤3; B:4≤x≤6; C:7≤x≤9;D:x≥10.請(qǐng)你根據(jù)兩幅圖提供的信息解答下列問(wèn)題:

(1)本次共調(diào)查了多少名教師?

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)計(jì)算扇形統(tǒng)計(jì)圖中扇形D的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】書店舉行購(gòu)書優(yōu)惠活動(dòng):

①一次性購(gòu)書不超過(guò)100元,不享受打折優(yōu)惠;

②一次性購(gòu)書超過(guò)100元但不超過(guò)200元,一律按原價(jià)打九折;

③一次性購(gòu)書超過(guò)200元,一律按原價(jià)打七折.

小麗在這次活動(dòng)中,兩次購(gòu)書總共付款229.4元,第二次購(gòu)書原價(jià)是第一次購(gòu)書原價(jià)的3倍,那么小麗這兩次購(gòu)書原價(jià)的總和是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開始的4分內(nèi)只進(jìn)水不出水,在隨后的若干分內(nèi)既進(jìn)水又出水,之后只有出水不進(jìn)水,每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量(單位:升)與時(shí)間(單位:分)之間的關(guān)系如圖所示,則進(jìn)水速度是______/分,出水速度是______/分,的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案