【題目】如圖,矩形ABCD中,AD=5,AB=6,點(diǎn)E為DC上一個動點(diǎn),把△ADE沿AE折疊,點(diǎn)F為CD上一個動點(diǎn),把△BCF沿BF折疊,當(dāng)點(diǎn)D的對應(yīng)點(diǎn)和點(diǎn)C的對應(yīng)點(diǎn)都落在點(diǎn)D′處時,EF的長為 .
【答案】
【解析】解:根據(jù)題意得△ADE≌△AD′E,△BCF≌△BD′F, ∴AD=AD′,BD′=BC,∠DAE=∠D′AE,∠CBF=∠D′BF,
∵矩形ABCD中,AD=BC,∠DAB=∠CBA=90°,
∴AD′=BD′,
∴∠D′AB=∠D′BA,
∴∠EAD′=∠FBD′,
∴△AED′≌△BFD′,
∴ED′=FD′,
∴DE=CF,
設(shè)DE=CF=D′E=D′F=x,
∴EF=6﹣2x,
過D′作D′G⊥AB于G反向延長交EF于H,
∵CD∥AB,
∴GH⊥EF,
則EH=HF=3﹣x,HG=AD=5,
∴D′G= =4,
∴HD′=1,
∵EH2+HD′2=ED′2 ,
∴(3﹣x)2+1=x2 ,
∴x= ,
∴EF= .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC≌△ADE,BC的延長線交AD于點(diǎn)F,交DE于點(diǎn)G,若∠CAD=20°,∠B=∠D=35°,∠EAB=120°,求∠AED,∠BFD以及∠DGB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(1)班開展了為期一周的“敬老愛親”社會活動,并根據(jù)學(xué)生做家務(wù)的時間來評價他們在活動中的表現(xiàn).老師調(diào)查了全班50名學(xué)生在這次活動中做家務(wù)的時間,并將統(tǒng)計的時間(單位:小時)分成5組:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計圖(如圖).
請根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動中學(xué)生做家務(wù)時間的中位數(shù)所在的組是____________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該班的小明同學(xué)這一周做家務(wù)2小時,他認(rèn)為自己做家務(wù)的時間比班里一半以上的同學(xué)多,你認(rèn)為小明的判斷符合實(shí)際嗎?請用適當(dāng)?shù)慕y(tǒng)計知識說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為2,l2,l3之間的距離為3,則AC的長是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解,回答下列問題:
(1)試猜想:1+3+5+7+9+…+2015+2017+2019的和是多少?
(2)推廣:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?
(3)計算:103+105+107+…+2017+2019.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,明亮同學(xué)在點(diǎn)A處測得大樹頂端C的仰角為36°,斜坡AB的坡角為30°,沿在同一剖面的斜坡AB行走16米至坡頂B處,然后再沿水平方向行走6.4米至大樹腳底點(diǎn)D處,那么大樹CD的高度約為多少米?)(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73, ≈1.7).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點(diǎn)E、F同時從B點(diǎn)出發(fā),沿射線BC向右勻速移動,已知F點(diǎn)移動速度是E點(diǎn)移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動距離為x(x>0).
(1)△EFG的邊長是(用含有x的代數(shù)式表示),當(dāng)x=2時,點(diǎn)G的位置在;
(2)若△EFG與梯形ABCD重疊部分面積是y,求y與x之間的函數(shù)關(guān)系式;
(3)探究(2)中得到的函數(shù)y在x取何值時,存在最大值?并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com