【題目】某校為了解學生對“防溺水”安全知識的掌握情況,從全校1500名學生中隨機抽取部分學生進行測試,并將測試成績(百分制,得分均為整數(shù))進行統(tǒng)計分析,繪制了不完整的頻數(shù)表和頻數(shù)直方圖.

組別

 成績x(分)

 頻數(shù)(人)

頻率

 A

 50x60

6

0.12

 B

 60x70

a

0.28

 C

 70x80

16

0.32

 D

 80x90

10

0.20

E

90x100

4

0.08

由圖表中給出的信息回答下列問題:

1)表中的a  ;抽取部分學生的成績的中位數(shù)在  組;

2)把如圖的頻數(shù)直方圖補充完整;

3)如果成績達到80分以上(包括80分)為優(yōu)秀,請估計該校1500名學生中成績優(yōu)秀的人數(shù).

【答案】1a14;C;(2)見解析;(3420

【解析】

1)首先計算抽取的學生總數(shù),再利用總人數(shù)×頻率可得a的值;

2)根據(jù)(1)中計算的數(shù)據(jù)畫圖即可;

3)利用樣本估計總體的方法可得答案.

解:(1)抽取的學生總數(shù):6÷0.1250人,

a50×0.2814;

∵成績從低到高排列后,第2526名同學的成績都排在C組,

∴抽取部分學生的成績的中位數(shù)在C組,

故答案為:14;C

2)如右圖所示:

31500×(0.20+008)1500×0.28420(人),

答:該校1500名學生中成績優(yōu)秀的有420人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天能售出20件,每件盈利40元。經調查發(fā)現(xiàn):如果這種襯衫的售價每降低1元時,平均每天能多售出2.設每件襯衫降價x.

1)降價后,每件襯衫的利潤為_____元,銷量為_____件;(用含x的式子表示)

2)為了擴大銷售,盡快減少庫存,商場決定釆取降價措施。但需要平均每天盈利1200元,求每件襯衫應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=CBD.

(1)求證:CD是⊙O的切線;

(2)若BC=6,tanCDA=,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸交于點,交軸于點的長為

(1)求拋物線的解析式;

(2)是第一象限拋物線上的一點,直線軸于,設點的橫坐標為的長為,用含的式子表示;

(3)的條件下,過點軸于點,點上,連接交拋物線于點,點軸上,,連接,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五張完全相同的卡片的正面分別畫有等邊三角形、平行四邊形、矩形、菱形、正方形,將其背面朝上放在桌面上,從中隨機抽取一張,所抽取的卡片上的圖形既是軸對稱圖形,又是中心對稱圖形的概率是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線ly=﹣x+4x軸交于點A,與y軸交于點B,以AB為直徑作M,點P為線段OA上一動點(與點O、A不重合),作PCABC,連結BP并延長交O于點D

1)求點A,B的坐標和tanBAO的值;

2)設x,tanBPOy

x1時,求y的值及點D的坐標;

y關于x的函數(shù)表達式;

3)如圖2,連接OC,當點P在線段OA上運動時,求OCPD的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC中,OA=OC, BA=BC.以O為圓心,以OA為半徑作☉O

(1)求證:BC☉O的切線:

(2)連接BO并延長交⊙O于點D,延長AO交⊙O于點E,與此的延長線交于點F

①補全圖形;

②求證:OF=OB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸交于兩點(在點左側),與軸交于點,連接,將沿所在的直線翻折,得到,連接

(1)的坐標為 ,點的坐標為 ;

(2)如圖1,若點落在拋物線的對稱軸上,且在軸上方,求拋物線的解析式.

(3)的面積為的面積為,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,一次函數(shù)的圖象與y軸交于點A,過點,且平行于x軸的直線與一次函數(shù)的圖象,反比例函數(shù)的圖象分別交于點CD

1)求點D 的坐標(用含m的代數(shù)式表示);

2)當m = 1時,用等式表示線段BDCD長度之間的數(shù)量關系,并說明理由;

3)當BDCD時,直接寫出m的取值范圍.

查看答案和解析>>

同步練習冊答案