【題目】如圖,在矩形ABCD中,AB4,BC6,點MBC的中點.

1)在AM上求作一點E,使ADE∽△MAB(尺規(guī)作圖,不寫作法);

2)在(1)的條件下,求AE的長.

【答案】1)過D DEAME,△ADE即為所求;見解析;(2AE

【解析】

1)根據(jù)題意作出圖形即可;

2)先根據(jù)矩形的性質(zhì),得到ADBC,則∠DAE=∠AMB,又由∠DEA=∠B,根據(jù)有兩角對應相等的兩三角形相似,即可證明出△DAE∽△AMB,根據(jù)相似三角形的對應邊成比例,即可求出DE的長,根據(jù)勾股定理即可得到結(jié)論.

解:(1)過D DEAME,ADE即為所求;

2四邊形ABCD是矩形,

ADBC

∴∠DAEAMB,

∵∠DEAB90°

∴△DAE∽△AMB,

DEADABAM,

M是邊BC的中點,BC6,

BM3,

AB4B90°,

AM5,

DE645,

DE,

AE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,∠C90°

1)請你用沒有刻度的直尺和圓規(guī),在線段AB上找一點F,使得點F到邊AC的距離等于FB.(注:不寫作法,保留作圖痕跡,對圖中涉及到的點的用字母進行標注)

2)在(1)的情況下,若BC5,AC12,則AF   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為5的⊙Oy軸相交于A點,B為⊙Ox軸上方的一個動點(不與點A重合),Cy軸上一點且∠OCB60°,IBCO的內(nèi)心,則AIO的外接圓的半徑的取值(或取值范圍)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為原點,O的半徑為1,點A的坐標為(2,0),動點BO上,以AB為邊作等邊△ABC(順時針),則線段OC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動點,將直線OP繞點P逆時針方向旋轉(zhuǎn)90交直線BC于點Q.

(1)當點P在線段AB上運動(不與A,B重合)時,求證:OABQ=APBP;

(2)(1)成立的條件下,設點P的橫坐標為m,線段CQ的長度為,求出關于m的函數(shù)解析式,并判斷是否存在最小值?若存在,請求出最小值;若不存在,請說明理由;

(3)直線AB上是否存在點P,使POQ為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,點C在優(yōu)弧上,將沿BC折疊后剛好經(jīng)過AB的中點D,連接AC,CD.則下列結(jié)論中錯誤的是( 。

ACCD;②ADBD;③+;④CD平分∠ACB

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、FG、H分別是邊AB、BC、CD、DA的中點,則下列說法正確的是( )

A.若四邊形EFGH是平行四邊形,則ACBD相等

B.若四邊形EFGH是正方形,則ACBD互相垂直且相等

C.ACBD,則四邊形EFGH是矩形

D.ACBD,則四邊形EFGH是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠ABC=45°,BC=7cmAB=cm。P從點B出發(fā)沿BC方向向點C運動,當點P到點C時,停止運動

1)如圖2,過點PPQBCPQAB于點Q,以PQ為一邊向右側(cè)作矩形PQRS,若點R恰好在邊AC上,且滿足QR=2PQ.BP得值.

(2)以點P為圓心,BP為半徑作圓.

①如圖3,當⊙P與邊AC相切于點E時,求BP的值;

②隨著BP的變化,⊙P與△ABC三邊的公共點的個數(shù)也在變化,請直接寫出公共點個數(shù)與對應的BP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x+3x軸交于AB兩點,(點A在點B的左側(cè)),與y軸交于點C

1)求出直線BC的解析式.

2M為線段BC上方拋物線上一動點,過Mx軸的垂線交BCH,過MMQBCQ,求出△MHQ周長最大值并求出此時M的坐標;當△MHQ的周長最大時在對稱軸上找一點R,使|ARMR|最大,求出此時R的坐標.

3T為線段BC上一動點,將△OCT沿邊OT翻折得到△OCT,是否存在點T使△OCT與△OBC的重疊部分為直角三角形,若存在請求出BT的長,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案