如圖,在ABCD中,∠B的平分線BE交AD于E,AE=10,ED=4,那么ABCD的周長= 。(原創(chuàng))
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
點(diǎn)A(-1,0)B(4,0)C(0,2)是平面直角坐標(biāo)系上的三點(diǎn)。
① 如圖1先過A、B、C作△ABC,然后在在軸上方作一個(gè)正方形D1E1F1G1,
使D1E1在AB上, F1、G1分別在BC、AC上
② 如圖2先過A、B、C作圓⊙M,然后在軸上方作一個(gè)正方形D2E2F2G2,
使D2E2在軸上 ,F(xiàn)2、G2在圓上
③ 如圖3先過A、B、C作拋物線,然后在軸上方作一個(gè)正方形D3E3F3G3,
使D3E3在軸上, F3、G3在拋物線上
請比較 正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3 的面積大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知⊙O的半徑為R,C、D是直徑AB的同側(cè)圓周上的兩點(diǎn),弧AC的度數(shù)為100°弧BC=2弧BD,動點(diǎn)P在線段AB上,則PC+PD的最小值為 ( )(原創(chuàng))
A.R B.R C.R D.R
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=x2﹣x與x軸交于O,A兩點(diǎn).半徑為1的動圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動;半徑為2的動圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動.兩圓同時(shí)出發(fā),且移動速度相等,當(dāng)運(yùn)動到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動.設(shè)點(diǎn)P的橫坐標(biāo)為t.若⊙P與⊙Q相離,則t的取值范圍是_____ ____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(-4,0),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P與y軸的負(fù)半軸交于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線對應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論;
(3)在第二象限中是否存在的一點(diǎn)Q,使得以A,O,Q為頂點(diǎn)的三角形與△OBC相似。若存在,請求出所有滿足的Q點(diǎn)坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com