如圖,⊙O的直徑AB=4cm,AC是⊙O的弦,∠BAC=30°,點D在⊙O上,OD⊥AC于E,則陰影部分的面積為    cm2
【答案】分析:此題可用銳角三角函數(shù)先求出AE、EO的值,進而用扇形的面積公式及三角形的面積公式即可求出陰影部分的面積.
解答:解:∵OD⊥AC于E,∠BAC=30°,AB=4cm,
∴∠AOE=∠AEO-∠BAC=90°-30°=60°,
AO=2,則AE=cos30°×AO=cm,
∴EO=1.
∵S陰影=S扇形AOD-S△AEO=
∴S陰影=cm2
點評:本題主要考查解直角三角形、扇形和三角形的面積公式,解題的關(guān)鍵是看出S陰影=S扇形AOD-S△AEO
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結(jié)論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習冊答案