如圖,在五邊形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=,則五邊形ABCDE的周長是   
【答案】分析:延長EA、CB交于點(diǎn)F,根據(jù)已知條件,可證明CDEF是正方形,△ABF是等腰直角三角形,可求出AF、BF的長,進(jìn)而求出五邊形的周長.
解答:解:延長EA、CB交于點(diǎn)F,
∵∠C=∠D=∠E=90°,
∴∠AFB=90°,
∴四邊形CDEF是正方形,
又∵∠A=∠B,
∴∠FAB=∠ABF,
∴△ABF是等腰直角三角形,
又∵AB=,
∴AF=BF=1,AE=BE=4-1=3,
∴五邊形ABCDE的周長是4+4+3+3+=14
點(diǎn)評:此題主要考查正方形和等腰直角三角形的判定,綜合利用了勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,在五邊形ABCDE中,BC∥AD,BD∥AE,AB∥EC.圖中與△ABC面積相等的三角形有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在五邊形ABCDE中,∠ABC=∠AED=90°,M是CD的中點(diǎn),BM=EM,求證:∠BAC=∠EAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,在五邊形ABCDE中,AE⊥DE,∠BAE=120°,∠BCD=60°,∠CDE-∠ABC=30°.
(1)求∠D的度數(shù);
(2)AB∥CD嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在五邊形ABCDE中,∠ABC=∠AED=90°,∠BAC=∠EAD,M是CD中點(diǎn),試判斷
BM,EM的大小關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動,到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動時(shí),線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案