【題目】如圖,點在⊙的直徑的延長線上,點在⊙上, , .
(1)求證: 是⊙的切線;
(2)若⊙的半徑為,求圖中陰影部分的面積.
【答案】(1)證明見解析(2)
【解析】試題分析:(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;
(2)先根據(jù)直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.
(1)證明:連接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=∠ACD-∠2=90°,
即OC⊥CD,
∴CD是⊙O的切線;
(2)解:∠1=∠2+∠A=60°.
∴S扇形BOC==.
在Rt△OCD中,∠D=30°,
∴OD=2OC=4,
∴CD==.
∴SRt△OCD=OC×CD=×2×=.
∴圖中陰影部分的面積為: -.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是人字型金屬屋架的示意圖,該屋架由BC、AC、BA、AD四段金屬材料焊接而成,其中A、B、C、D四點均為焊接點,且AB=AC,D為BC的中點,假設(shè)焊接所需的四段金屬材料已截好,并已標(biāo)出BC段的中點D,那么,如果焊接工身邊只有可檢驗直角的角尺,而又為了準(zhǔn)確快速地焊接,他應(yīng)該首先選取的兩段金屬材料及焊接點是( )
A.AB和AD,點AB.AB和AC,點B
C.AC和BC, 點CD.AD和BC,點D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中有一點.
(1)若點到軸的距離為2時,求點的坐標(biāo);
(2)若點的坐標(biāo)是,當(dāng)軸時,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,點為邊中點,點為邊中點;點, 為邊三等分點, , 為邊三等分點.小瑞分別用不同的方式連接矩形對邊上的點,如圖2,圖3所示.那么,圖2中四邊形的面積與圖3中四邊形的面積相等嗎?
(1)小瑞的探究過程如下
在圖2中,小瑞發(fā)現(xiàn), ;
在圖3中,小瑞對四邊形面積的探究如下. 請你將小瑞的思路填寫完整:
設(shè),
∵
∴,且相似比為,得到
∵
∴,且相似比為,得到
又∵,
∴
∴, ,
∴,則(填寫“”,“”或“”)
(2)小瑞又按照圖4的方式連接矩形對邊上的點.則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,垂直平分線段(),點 是線段 延長線上的一點,且,連接,過點作 于點,交的延長線與點.
(1)若 ,則______(用的代數(shù)式表示);
(2)線段與線段相等嗎?為什么?
(3)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
序號 | 1 | 2 | 3 | … |
圖形 |
|
|
| … |
我們把某格中字母和所得到的多項式稱為“特征多項式”,例如第1格的“特征多項式”為.
回答下列問題:
(1)第3格的“特征多項式”為____________,
第4格的“特征多項式”為____________,
第格的“特征多項式”為____________;
(2)若第1格的“特征多項式”的值為10,第2格的“特征多項式”的值為19,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)1至2019按照一定規(guī)律排成下表:
記aij表示第i行第j個數(shù),如a14=4表示第1行第4個數(shù)是4.
(1)直接寫出a42= ,a53= ;
(2)①如果aij=2019,那么i= ,j= ;②用i,j表示aij= ;
(3)將表格中的5個陰影格子看成一個整體并平移,所覆蓋的5個數(shù)之和能否等于2027.若能,求出這5個數(shù)中的最小數(shù),若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,AB表示A點和B點之間的距離,C是AB的中點,且a、b滿足|a+3|+(b+3a)2=0.
(1)求點C表示的數(shù);
(2)點P從A點以3個單位每秒向右運動,點Q同時從B點以2個單位每秒向左運動,若AP+BQ=2PQ,求時間t;
(3)若點P從A向右運動,點M為AP中點,在P點到達(dá)點B之前:①的值不變;②2BM﹣BP的值不變,其中只有一個正確,請你找出正確的結(jié)論并求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的點P和圖形G,給出如下的定義:若在圖形G上存在一點Q ,使得P、Q之間的距離等于1,則稱P為圖形G的關(guān)聯(lián)點.
(1)當(dāng)⊙O的半徑為1時:
①點, , 中,⊙O的關(guān)聯(lián)點有_____________________.
②直線經(jīng)過(0,1)點,且與軸垂直,點P在直線上.若P是⊙O的關(guān)聯(lián)點,求點P的橫坐標(biāo)的取值范圍.
(2)已知正方形ABCD的邊長為4,中心為原點,正方形各邊都與坐標(biāo)軸垂直.若正方形各邊上的點都是某個圓的關(guān)聯(lián)點,求圓的半徑的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com