(2012•鞍山)如圖,某社區(qū)有一矩形廣場ABCD,在邊AB上的M點和邊BC上的N點分別有一棵景觀樹,為了進一步美化環(huán)境,社區(qū)欲在BD上(點B除外)選一點P再種一棵景觀樹,使得∠MPN=90°,請在圖中利用尺規(guī)作圖畫出點P的位置(要求:不寫已知、求證、作法和結論,保留作圖痕跡).
分析:首先連接MN,作MN的垂直平分線交MN于O,以O為圓心,
1
2
MN長為半徑畫圓,交BD于點P,點P即為所求.
解答:解:如圖所示:

點P即為所求.
點評:此題主要考查了作圖與應用作圖,關鍵是理解題意,弄清問題中對所作圖形的要求,結合對應幾何圖形的性質和基本作圖的方法作圖.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,直線a∥b,EF⊥CD于點F,∠2=65°,則∠1的度數(shù)是
25°
25°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于點E,且E是BC中點;動點P從點E出發(fā)沿路徑ED→DA→AB以每秒1個單位長度的速度向終點B運動;設點P的運動時間為t秒,△PBC的面積為S,則下列能反映S與t的函數(shù)關系的圖象是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,△ABC內接于⊙O,AB、CD為⊙O直徑,DE⊥AB于點E,sinA=
12
,則∠D的度數(shù)是
30°
30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點A處和點B處各有一棵大樹,AB=30米,某人在河岸MN上選一點C,AC⊥MN,在直線MN上從點C前進一段路程到達點D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(
3
≈1.732,結果保留三個有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,AB是⊙O的弦,AB=4,過圓心O的直線垂直AB于點D,交⊙O于點C和點E,連接AC、BC、OB,cos∠ACB=
13
,延長OE到點F,使EF=2OE.
(1)求⊙O的半徑;
(2)求證:BF是⊙O的切線.

查看答案和解析>>

同步練習冊答案