【題目】(本小題6分)為了參加中考體育測試,甲,乙,丙三位同學(xué)進行足球傳球訓(xùn)練。球從一個人

腳下隨機傳到另一個人腳下,且每位傳球人傳球給其余兩人的機會是均等的,由甲開始傳球,共傳三次。

1)求請用樹狀圖列舉出三次傳球的所有可能情況;

2)傳球三次后,球回到甲腳下的概率;

3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

【答案】1)見解析;(2;(3)乙腳下的概率大.

【解析】

試題(1)根據(jù)題意畫出樹狀圖,得出所有的可能情況;(2)根據(jù)樹狀圖得出傳到甲腳下的概率;(3)根據(jù)樹狀圖得出傳到乙腳下的概率,然后進行比較大小,得出答案.

試題解析:(1)三次傳球所有可能的情況如圖:

(2)由圖知:三次傳球后,球回到甲的概率為P()=

(3)由圖知:三次傳球后,球回到乙的概率為P()=

∵P()P() ∴是傳到乙腳下的概率大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點OABC的兩條角平分線的交點,過點OODBC,垂足為D,且OD4.若ABC的面積是34,則ABC的周長為( 。

A.8.5B.15C.17D.34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出5件。若商場平均每天要盈利1600元,每件襯衫應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中,∠BAC=90°AB=6,AC=8,D AC 上一點,將ABD 沿 BD 折疊,使點 A 恰好落在 BC 上的 E 處,則折痕 BD 的長是(

A.5B.C.3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=-x2+2x有下列四個結(jié)論:

它的對稱軸是直線x=1;

設(shè)y1=-x12 +2x1,y2=-x22+2x2,則當(dāng)x2>x1時,有y2>y1;

它的圖象與x軸的兩個交點是(0,0和(2,0;

當(dāng)0<x<2時,y>0

其中正確結(jié)論的個數(shù)為(

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=與x軸交于點A,點B,與y軸交于點C,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l交拋物線于點Q.

(1)求點A、點B、點C的坐標(biāo);

(2)求直線BD的解析式;

(3)當(dāng)點P在線段OB上運動時,直線l交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;

(4)在點P的運動過程中,是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以BC為半徑作B,交AB于點C,交AB的延長線于點E,連接CDCE

1)求證:ACD∽△AEC

2)當(dāng)時,求tanE;

3)若AD=4AC=4,求ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:已知,如圖(1),在面積為S△ABC中, BC=a,AC=b, AB=c,內(nèi)切圓O的半徑為r連接OA、OBOC,△ABC被劃分為三個小三角形.

(1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r

(2)理解應(yīng)用:如圖(3),在等腰梯形ABCD中,AB∥DCAB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設(shè)它們的半徑分別為r1r2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)某校在基地參加社會實踐話動中,帶隊老師考問學(xué)生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個寬為3米的出入口,如圖所示,如何設(shè)計才能使園地的而積最大?下面是兩位學(xué)生爭議的情境:

請根據(jù)上面的信息,解決問題:

1)設(shè)AB=x米(x0),試用含x的代數(shù)式表示BC的長;

2)請你判斷誰的說法正確,為什么?

查看答案和解析>>

同步練習(xí)冊答案