【題目】如圖,某單向行駛隧道橫截面上的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構(gòu)成.矩形的長是12米,寬是3米,隧道的最大高度為6米,現(xiàn)以O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.
(1)直接寫出點(diǎn)M、點(diǎn)N及拋物線頂點(diǎn)P的坐標(biāo);
(2)求出這條拋物線的函數(shù)解析式;
(3)一大貨運(yùn)汽車裝載某大型設(shè)備后高為5米,寬為4米,那么這輛貨車能否安全通過?
【答案】(1)M(12,0)、N(0,3) P(6,6) ;(2) ;(3)能
【解析】試題分析:(1)看圖可得出M,P的坐標(biāo).
(2)已知M,P的坐標(biāo),易求出這條拋物線的函數(shù)解析式.
(2)將x=4代入(2)中的函數(shù)式求y的值,再與5m進(jìn)行比較即可求解.
試題解析:解:(1)由題意得:M(12,0),P(6,6),N(0,3);
(2)由頂點(diǎn)P(6,6)設(shè)此函數(shù)解析式為:y=a(x﹣6)2+6,將點(diǎn)(0,3)代入得a=﹣,∴y=﹣(x﹣6)2+6=﹣x2+x+3;
(3)當(dāng)x=4時,代入y=﹣x2+x+3=﹣+7=,∵>5,∴能通過.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B的坐標(biāo)是(﹣4,0),將△AOB繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O、B的對應(yīng)點(diǎn)分別是點(diǎn)E、F.
(1)請?jiān)趫D中畫出△AEF.
(2)請?jiān)趚軸上找一個點(diǎn)P,使PA+PE的值最小,并直接寫出P點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中對角線AC的垂直平分線交AD于點(diǎn)F,交BC于點(diǎn)E.
求證:四邊形AECF是菱形.
證明:∵EF是AC的垂直平分線(已知)
∴四邊形AECF是不正確
⑴你能找出小明錯誤的原因嗎?請你指出來.
⑵請你給出本題的證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山.為了創(chuàng)造良好的生態(tài)生活環(huán)境,某省2017年建設(shè)城鎮(zhèn)污水配套管網(wǎng)3100000米,數(shù)字3100000科學(xué)記數(shù)法可以表示為( )
A. 3.1×105 B. 31×105 C. 0.31×107 D. 3.1×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直線x=1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù))經(jīng)過A(4,0)和B(0,4)兩點(diǎn),其頂點(diǎn)為C.
(1)求該拋物線的表達(dá)式及其頂點(diǎn)C的坐標(biāo);
(2)若點(diǎn)M是拋物線上的一個動點(diǎn),且位于第一象限內(nèi).
①設(shè)△ABM的面積為S,試求S的最大值;
②若S為整數(shù),則這樣的M點(diǎn)有 個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com