【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn).

1)求反比例函數(shù)的解析式;

2)點(diǎn)軸上的一動(dòng)點(diǎn),試確定點(diǎn)的坐標(biāo),使最小;

3)直線與線段有交點(diǎn),直接寫出的取值范圍.

【答案】(1);(2)點(diǎn)坐標(biāo);(3).

【解析】

1)把點(diǎn)A坐標(biāo)代入即可解決問題.

2)如圖1中,由題意B4,1),作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′,連接BA′x軸于P,此時(shí)PA+PB最小,求出直線BA′的解析式,即可解決問題.

3)分別求出直線y=nx經(jīng)過點(diǎn)A、B時(shí)的n的值,即可解決問題.

解:(1)∵點(diǎn)時(shí),

.

∴反比例函數(shù)的解析式為.

2)如圖1中,由題意,作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),連接軸于,

此時(shí)最小.

,,

設(shè)直線的解析式為,則有

解得,

∴直線的解析式為,

,得,

∴點(diǎn)坐標(biāo).

3)直線經(jīng)過時(shí),

直線經(jīng)過時(shí),,

∴直線與線段有交點(diǎn)時(shí),的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O△ABC的外心,作正方形OCDE,下列說法:點(diǎn)O△AEB的外心;點(diǎn)O△ADC的外心;點(diǎn)O△BCE的外心;點(diǎn)O△ADB的外心.其中一定不成立的說法是(  )

A.②④B.①③C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax32+a≠0)過點(diǎn)C0,4),頂點(diǎn)為M,與x軸交于A,B兩點(diǎn).如圖所示以AB為直徑作圓,記作⊙D

1)試判斷點(diǎn)C與⊙D的位置關(guān)系;

2)直線CM與⊙D相切嗎?請(qǐng)說明理由;

3)在拋物線上是否存在一點(diǎn)E,能使四邊形ADEC為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點(diǎn)E在⊙O上,∠EAB的平分線交⊙O于點(diǎn)C,過點(diǎn)C作AE的垂線,垂足為D,直線DC與AB的延長(zhǎng)線交于點(diǎn)P.

(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;

(2)若tan∠P=,AD=6,求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)下載一個(gè)APP,繳納一定數(shù)額的押金,就能以每小時(shí)0.51元的價(jià)格解鎖一輛自行車任意騎行最近的網(wǎng)紅非共享單車莫屬.共享單車為解決市民出行的最后一公里難題幫了大忙,人們?cè)谙硎芸萍歼M(jìn)步、共享經(jīng)濟(jì)帶來的便利的同時(shí),隨意停放、加裝私鎖、大卸八塊等毀壞單車的行為也層出不窮.某共享單車公司一月投入部分自行車進(jìn)入市場(chǎng),一月底發(fā)現(xiàn)損壞率不低于10%,二月初又投入1200輛進(jìn)入市場(chǎng),使可使用的自行車達(dá)到7500輛.

(1)一月份該公司投入市場(chǎng)的自行車至少有多少輛?

(2)二月份的損壞率達(dá)到20%,進(jìn)入三月份,該公司新投入市場(chǎng)的自行車比二月份增長(zhǎng)4a%,由于媒體的關(guān)注,毀壞共享單車的行為引起了一場(chǎng)國(guó)民素質(zhì)的大討論,三月份的損壞率下降a%,三月底可使用的自行車達(dá)到7752輛,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副學(xué)生常用的三角板如下圖擺放在一起,組成一個(gè)四邊形,連接,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),頂點(diǎn)為點(diǎn).

1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;(用含有的代數(shù)式表示)

2)連接.

①若平分,求二次函數(shù)的表達(dá)式;

②連接,若平分,求二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C1yx22x與拋物線C2yax2+bx開口大小相同、方向相反,它們相交于O,C兩點(diǎn),且分別與x軸的正半軸交于點(diǎn)B,點(diǎn)A,OA2OB

1)求拋物線C2的解析式;

2)在拋物線C2的對(duì)稱軸上是否存在點(diǎn)P,使PA+PC的值最?若存在,求出點(diǎn)P的坐標(biāo),若不存在,說明理由;

3M是直線OC上方拋物線C2上的一個(gè)動(dòng)點(diǎn),連接MOMC,M運(yùn)動(dòng)到什么位置時(shí),MOC面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校在休息日用藥熏消毒法對(duì)教室進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米的含藥量y(毫克)與時(shí)間x(時(shí))成正比例;藥物釋放結(jié)束后,yx成反比例;如圖所示,根據(jù)圖中提供的信息,解答下列問題:

1)寫出從藥物釋放開始,yx之間的兩個(gè)函數(shù)解析式;

2)據(jù)測(cè)定,當(dāng)藥物釋放結(jié)束后,每立方米的含藥量降至0.25毫克以下時(shí),學(xué)生方可進(jìn)入教室,那么從藥物釋放開始,至少需要經(jīng)過多長(zhǎng)時(shí)間,學(xué)生才能進(jìn)入教室?

查看答案和解析>>

同步練習(xí)冊(cè)答案