【題目】(聊城臨清市期末)如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD交于點(diǎn)O,下列條件中不能說明四邊形ABCD是平行四邊形的是( )
A. AD=BC B. AC=BD
C. AB∥CD D. ∠BAC=∠DCA
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,點(diǎn)B在x軸上,且.
求點(diǎn)B的坐標(biāo);
求的面積;
在y軸上是否存在P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,AB是直徑,AC是切線且AC=AB,聯(lián)結(jié)BC交⊙O于點(diǎn)D,試僅用無刻度直尺,作以D為切點(diǎn)的⊙O的切線DT.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為正整數(shù)),則有a+b=m2+2n2+2mn,
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a(bǔ)+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= , b= .
(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: + = ( + )2;(答案不唯一)
(3)若a+4=(m+n)2 ,且a、m、n均為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD的周長(zhǎng)為100,對(duì)角線AC,BD相交于點(diǎn)O,△AOD與△AOB的周長(zhǎng)之差為 20,求AD,CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購(gòu)買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買足球和籃球共20個(gè),但要求購(gòu)買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購(gòu)買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長(zhǎng)線上一點(diǎn),連接AG,分別交BD、CD于點(diǎn)E、F,連接CE.
(1)求證:∠DAE=∠DCE;
(2)當(dāng)AE=2EF時(shí),判斷FG與EF有何等量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
①面積相等的兩個(gè)直角三角形全等;
②對(duì)角線互相垂直的四邊形是正方形;
③將拋物線 向左平移4個(gè)單位,再向上平移1個(gè)單位可得到拋物線 ;
④兩圓的半徑R、r分別是方程x2-3x+2=0 的兩根,且圓心距d=3, 則兩圓外切.
A. ① B. ② C. ③ D. ④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com