【題目】解不等式3(x﹣1)≤ ,并把它的解集在數(shù)軸上表示出來.
【答案】解:6(x﹣1)≤x+4, 6x﹣6≤x+4,
6x﹣x≤4+6,
5x≤10,
x≤2,
將解集表示在數(shù)軸上如下:
【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.
【考點精析】本題主要考查了不等式的解集在數(shù)軸上的表示和一元一次不等式的解法的相關(guān)知識點,需要掌握不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈;步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數(shù)化為1(特別要注意不等號方向改變的問題)才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖象與矩形OABC對角線的交點為M,分別與AB,BC交于點D,E,連接OD,OE,則 = , 當(dāng)k=4時,四邊形ODBE的面積為平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD交于點O,E為AB中點,點F在CB的延長線上,且EF∥BD.
(1)求證;四邊形OBFE是平行四邊形;
(2)當(dāng)線段AD和BD之間滿足什么條件時,四邊形OBFE是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線AB上任取一點O,過點O作射線OC、OD,使∠COD=100°,當(dāng)∠AOC=30°時,∠BOD的度數(shù)是( )
A. 50° B. 80° C. 80°或150° D. 50°或110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點E點,延長BC至F點使CF=BE,連接AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正整數(shù)1,2,3,4,…排列成如圖所示的一個表.
(1)用一正方形在表中隨意框住4個數(shù),把其中最大的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從大到小依次是 , , ;
(2)在(1)的前提下,當(dāng)被框住的4個數(shù)之和等于984時,x位于該表的第幾行第幾列?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。
A. 2, B. 2,1 C. 4, D. 4,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意三點A,B,C,給出如下定義: 如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1 , A2B2C2D2 , AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.
(1)已知A(﹣2,3),B(5,0),C(t,﹣2). ①當(dāng)t=2時,點A,B,C的最優(yōu)覆蓋矩形的面積為;
②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,求直線AC的表達式;
(2)已知點D(1,1).E(m,n)是函數(shù)y= (x>0)的圖象上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com