如圖,一次函數(shù)的圖象分別與軸、軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.求過B、C兩點(diǎn)直線的解析式.

 

【答案】

解:一次函數(shù)中,令得:;令,解得。

∴A的坐標(biāo)是(0,2),C的坐標(biāo)是(3,0).

作CD⊥軸于點(diǎn)D。

 

 

∵∠BAC=90°,∴∠OAB+∠CAD=90°。

又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO。

又∵AB=AC,∠BOA=∠CDA=90°,∴△ABO≌△CAD(AAS)。

∴AD=OB=2,CD=OA=3,OD=OA+AD=5。∴C的坐標(biāo)是(5,3)。

設(shè)BC的解析式是,

根據(jù)題意得:,解得:。

∴BC的解析式是:。

【解析】一次函數(shù)綜合題,全等三角形的判定和性質(zhì),待定系數(shù)法,直線上點(diǎn)的坐標(biāo)與方程的關(guān)系。

【分析】作CD⊥x軸于點(diǎn)D,易證△ABO≌△CAD,即可求得AD,CD的長,則C的坐標(biāo)即可求解;利用待定系數(shù)法即可求得直線BC的解析式。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
12x
的圖象和一次函數(shù)y=kx-7的圖象都經(jīng)過點(diǎn)P(m,2).
(1)求這個(gè)一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點(diǎn)A、B在這個(gè)一次函數(shù)的圖象上,頂點(diǎn)C、D在這個(gè)反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標(biāo)分別為a、b(b>a>0),求代數(shù)式ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= –  ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于BC兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)    求一次函數(shù)的解析式;

(2)    設(shè)函數(shù)y2=  (x>0)的圖象與y1= –  (x<0)的圖象關(guān)于y軸對(duì)稱.在y2=  (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)(x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0),當(dāng)x<-1時(shí),一次函數(shù)值大于反比例函數(shù)值,當(dāng)x>-1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)求一次函數(shù)的解析式;

(2)設(shè)函數(shù)(x>0)的圖象與(x<0)的圖象關(guān)于y軸對(duì)稱,在(x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過P點(diǎn)作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

解答:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱.在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱.在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案