【題目】在綜合實(shí)踐課中,小慧將一張長方形卡紙如圖1所示裁剪開,無縫隙不重疊的拼成如圖2所示的“”形狀,且成軸對(duì)稱圖形.裁剪過程中卡紙的消耗忽略不計(jì),若已知,,.
求(1)線段與的差值是___
(2)的長度.
【答案】9 6
【解析】
如圖1,延長FG交BC于H,設(shè)CE=x,則E'H'=CE=x,根據(jù)軸對(duì)稱的性質(zhì)得:D'E'=DC=E'F'=9,表示GH,EH,BE的長,證明△EGH∽△EAB,則,可得x的值,
即可求出線段、及FG的長,故可求解.
(1)如圖1,延長FG交BC于H,
設(shè)CE=x,則E'H'=CE=x,
由軸對(duì)稱的性質(zhì)得:D'E'=DC=E'F'=9,
∴H'F'=AF=9+x,
∵AD=BC=16,
∴DF=16(9+x)=7x,
即C'D'=DF=7x=F'G',
∴FG=7x,
∴GH=9(7x)=2+x,EH=16x(9+x)=72x,
∴EH∥AB,
∴△EGH∽△EAB,
∴,
∴,
解得x=1或31(舍),、及FG
∴AF=9+x=10,EC=1,故AF-EC=9
故答案為:9;
(2)由(1)得FG=7x =7-1=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過⊙O外一點(diǎn)P作⊙O的兩條切線PC,PD,切點(diǎn)分別為C,D,連接OP,CD.
(1)求證:OP⊥CD;
(2)連接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線的頂點(diǎn)為,經(jīng)過拋物線上的兩點(diǎn)和的直線交拋物線的對(duì)稱軸于點(diǎn).
(1)求拋物線的解析式和直線的解析式.
(2)在拋物線上兩點(diǎn)之間的部分(不包含兩點(diǎn)),是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若點(diǎn)在拋物線上,點(diǎn)在軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.
(1)求坡底C點(diǎn)到大樓距離AC的值;
(2)求斜坡CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知,.
(1)如圖1,求的值.
(2)把繞著點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)、旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)分別為、.
①當(dāng)恰好落在的延長線上時(shí),如圖2,求出點(diǎn)、的坐標(biāo).
②若點(diǎn)是的中點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),如圖3,在旋轉(zhuǎn)過程中,請(qǐng)直接寫出線段長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)①如圖1,請(qǐng)用直尺(不帶刻度)和圓規(guī)作出的內(nèi)接正三角形(按要求作圖,不要求寫作法,但要保留作圖痕跡).
②若的內(nèi)接正三角形邊長為6,求的半徑;
(2)如圖2,的半徑就是(1)中所求半徑的值.點(diǎn)在上,是的切線,點(diǎn)在射線上,且,點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線方向移動(dòng),點(diǎn)是上的點(diǎn)(不與點(diǎn)重合),是的切線.設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒),當(dāng)為何值時(shí),是直角三角形,請(qǐng)你求出滿足條件的所有值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里有標(biāo)號(hào)為的五個(gè)小球,除數(shù)字不同外,小球沒有任何區(qū)別,摸球前先攪拌均勻,每次摸一個(gè)球.
(1)下列說法:
①摸一次,摸出一號(hào)球和摸出號(hào)球的概率相同;
②有放回的連續(xù)摸次,則一定摸出號(hào)球兩次;
③有放回的連續(xù)摸次,則摸出四個(gè)球標(biāo)號(hào)數(shù)字之和可能是.
其中正確的序號(hào)是
(2)若從袋中不放回地摸兩次,求兩球標(biāo)號(hào)數(shù)字是一奇一偶的概率,(用列表法或樹狀圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com