【題目】如圖,AD⊥BC于點D,點E在邊AB上,CE與AD交于點G,EF⊥AD于點F,AE=5cm,BE=10cm,BD=9cm,CD=5cm,求AF、FG、GD的長.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數(為常數,且)的圖像與反比例函數的圖像交于,兩點.
(1)求一次函數的表達式;
(2)若將直線向下平移個單位長度后與反比例函數的圖像有且只有一個公共點,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點P是邊AC上一點,過點P作PQ∥AB交BC于點Q,D為線段PQ的中點,BD平分∠ABC,以下四個結論①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正確的結論的個數( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某駐村扶貧小組實施產業(yè)扶貧,幫助貧困農戶進行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經過市場調查發(fā)現,某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數關系如下圖所示:
(1)求y與x的函數解析式(也稱關系式);
(2)求這一天銷售西瓜獲得的利潤的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售一種商品,進價為每個20元,規(guī)定每個商品售價不低于進價,且不高于60元,經調查發(fā)現每天的銷售量(個與每個商品的售價(元滿足一次函數關系,其部分數據如下所示:
每個商品的售價(元 | 30 | 40 | 50 | ||
每天銷售量(個 | 100 | 80 | 60 |
(1)求與之間的函數表達式;
(2)不考慮其他因素,當商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出10件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當的降價措施.經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出1件,若商場平均每天要盈利600元,每件襯衫應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】交通工程學理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量(輛小時)指單位時間內通過道路指定斷面的車輛數;速度(千米小時)指通過道路指定斷面的車輛速度,密度(輛千米)指通過道路指定斷面單位長度內的車輛數.為配合大數據治堵行動,測得某路段流量與速度之間關系的部分數據如下表:
速度v(千米/小時) | ||||||||
流量q(輛/小時) |
(1)根據上表信息,下列三個函數關系式中,刻畫,關系最準確是_____________________.(只填上正確答案的序號)
①;②;③
(2)請利用(1)中選取的函數關系式分析,當該路段的車流速度為多少時,流量達到最大?最大流量是多少?
(3)已知,,滿足,請結合(1)中選取的函數關系式繼續(xù)解決下列問題:市交通運行監(jiān)控平臺顯示,當時道路出現輕度擁堵.試分析當車流密度在什么范圍時,該路段將出現輕度擁堵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.
求:(1)∠C的度數;
(2)A,C兩港之間的距離為多少km.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小穎和小紅兩位同學在學習“概率”時,做擲骰子(質地均勻的正方體)實驗.
他們在一次實驗中共擲骰子次,試驗的結果如下:
朝上的點數 | ||||||
出現的次數 |
①填空:此次實驗中“點朝上”的頻率為________;
②小紅說:“根據實驗,出現點朝上的概率最大.”她的說法正確嗎?為什么?
小穎和小紅在實驗中如果各擲一枚骰子,那么枚骰子朝上的點數之和為多少時的概率最大?試用列表或畫樹狀圖的方法加以說明,并求出其最大概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com