【題目】如圖,在△ABC中,ABACADBE是高,它們相交于點(diǎn)H,且AEBE

求證:AH2BD

【答案】詳見(jiàn)解析

【解析】

由等腰三角形的底邊上的垂線(xiàn)與中線(xiàn)重合的性質(zhì)求得BC=2BD,根據(jù)直角三角形的兩個(gè)銳角互余的特性求知∠1+∠C=90°;又由已知條件AE⊥AC∠2+∠C=90°,所以根據(jù)等量代換求得∠1=∠2;然后由三角形全等的判定定理SAS證明△AEH≌△BEC,再根據(jù)全等三角形的對(duì)應(yīng)邊相等及等量代換求得AH=2BD

∵AD是高,BE是高

∴∠EBC+∠C=∠CAD+∠C=90°

∴∠EBC=∠CAD

∵AEBE

∠AEH=∠BEC

∴△AEH△BEC(ASA)

∴AH BC

∵ABAC,AD是高

∴BC=2BD

∴AH 2BD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn),直線(xiàn),相交于點(diǎn),,分別與軸相交于點(diǎn).

(1)求點(diǎn)P的坐標(biāo).

(2),求x的取值范圍.

(3)點(diǎn)x軸上的一個(gè)動(dòng)點(diǎn),過(guò)x軸的垂線(xiàn)分別交于點(diǎn),當(dāng)EF=3時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,A,B為格點(diǎn)

(Ⅰ)AB的長(zhǎng)等于__

(Ⅱ)請(qǐng)用無(wú)刻度的直尺,在如圖所示的網(wǎng)格中求作一點(diǎn)C,使得CA=CB且ABC的面積等于,并簡(jiǎn)要說(shuō)明點(diǎn)C的位置是如何找到的__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一農(nóng)戶(hù)要建一矩形豬舍,豬舍的一邊利用長(zhǎng)為12m的住房墻,另外三邊用25m長(zhǎng)的建筑材料圍成,為了方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門(mén).所圍成矩形豬舍的長(zhǎng)、寬分別為多少時(shí),豬舍的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)圖案中,是軸對(duì)稱(chēng)圖形的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AB=AC,BDAC于點(diǎn)D,CEAB于點(diǎn)ECEBD交于點(diǎn)O,AO的延長(zhǎng)線(xiàn)交BC于點(diǎn)F,則圖中全等的三角形有(

A.8對(duì)B.7對(duì)C.6對(duì)D.5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O直徑,⊙O過(guò)AC的中點(diǎn)D,DEBC,垂足為E.

(1)由這些條件,你能得出哪些結(jié)論?(要求:不準(zhǔn)標(biāo)其他字母,找結(jié)論過(guò)程中所連的輔助線(xiàn)不能出現(xiàn)在結(jié)論中,不寫(xiě)推理過(guò)程,寫(xiě)出4個(gè)結(jié)論即可)

(2)若∠ABC為直角,其他條件不變,除上述結(jié)論外你還能推出哪些新的正確結(jié)論?并畫(huà)出圖形.(要求:寫(xiě)出6個(gè)結(jié)論即可,其他要求同(1))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,AB4,BC8,現(xiàn)把矩形紙片ABCD沿對(duì)角線(xiàn)BD折疊,點(diǎn)CC′重合,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是兩個(gè)全等的等邊三角形,.有下列四個(gè)結(jié)論:①;②;③直線(xiàn)垂直平分線(xiàn)段;④四邊形是軸對(duì)稱(chēng)圖形.其中正確的結(jié)論有_____.(把正確結(jié)論的序號(hào)填在橫線(xiàn)上)

查看答案和解析>>

同步練習(xí)冊(cè)答案