【題目】如圖,在Rt△ABC中,∠BCA=90°,CD是AB邊上的中線,分別過點C,D作BA和BC的平行線,兩線交于點E,且DE交AC于點O,連接AE. 求證:四邊形ADCE是菱形.

【答案】證明:∵DE∥BC,EC∥AB,

∴四邊形DBCE是平行四邊形.

∴EC∥DB,且EC=DB.

在Rt△ABC中,CD為AB邊上的中線,

∴AD=DB=CD.

∴EC=AD.

∴四邊形ADCE是平行四邊形.

∴ED∥BC.

∴∠AOD=∠ACB.

∵∠ACB=90°,

∴∠AOD=∠ACB=90°.

∴平行四邊形ADCE是菱形


【解析】欲證明四邊形ADCE是菱形,需先證明四邊形ADCE為平行四邊形,然后再證明其對角線相互垂直即可.
【考點精析】關(guān)于本題考查的直角三角形斜邊上的中線和菱形的判定方法,需要了解直角三角形斜邊上的中線等于斜邊的一半;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,菱形ABCD中,對角線AC,BD相交于點O,若再補充一個條件能使菱形ABCD成為正方形,則這個條件是 . (只填一個條件即可,答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為使我市冬季“天更藍(lán)、房更暖”、政府決定實施“煤改氣”供暖改造工程,現(xiàn)甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中:
①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③當(dāng)x=4時,甲、乙兩隊所挖管道長度相同;
④甲隊比乙隊提前2天完成任務(wù).
正確的個數(shù)有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 中,對角線交點,邊上的動點(點合),于點 ,連接 .下列五個結(jié)論 ; ; ;,則最小值是 ,其中正確結(jié)論的個數(shù)是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(﹣2,1)與點B關(guān)于原點對稱,則點B的坐標(biāo)為(  )
A.(﹣2,1)
B.(2,﹣1)
C.(2,1)
D.(﹣2,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件商品按進價提高40%后標(biāo)價,然后打八折賣出,結(jié)果仍能獲利18元,問這件商品的進價是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某機動車出發(fā)前油箱內(nèi)有油42L,行駛?cè)舾尚r后,在途中加油站加油若干升.油箱中余油量Q(L)與行駛時間t(h)之間的函數(shù)關(guān)系如圖所示,根據(jù)如圖回答問題:
(1)機動車行駛幾小時后加油?加了多少油?
(2)試求加油前油箱余油量Q與行駛時間t之間的關(guān)系式;
(3)如果加油站離目的地還有230km,車速為40km/h,要到達(dá)目的地,油箱中的油是否夠用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面哪種不適于用來表示我校男、女教師的人數(shù)( )

A. 數(shù)據(jù)統(tǒng)計表 B. 扇形統(tǒng)計圖

C. 折線統(tǒng)計圖 D. 條形統(tǒng)計圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多塊大小不同的30°直角三角板如圖所示,擺放在平面直角坐標(biāo)系中,第一塊三角板AOB的一條直角邊與y軸重合且點A的坐標(biāo)為(0,1),ABO=30°;第二塊三角板的斜邊BB1與第一塊三角板的斜邊AB垂直且交y軸于點B1;第三塊三角板的斜邊B1B2與第二塊三角板的斜邊BB1垂直且交x軸于點B2;第四塊三角板的斜邊B2B3與第三塊三角板的斜邊B1B2C垂直且交y軸于點B3;…按此規(guī)律繼續(xù)下去,則點B2017的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案