在平行四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,如果AC=10,BD=8,AB=x,則x的取值范圍是
1<x<9
1<x<9
分析:根據(jù)平行四邊形的性質(zhì)求出OA、OB,根據(jù)三角形的三邊關(guān)系定理得到OA-OB<x<OA+OB,代入求出即可.
解答:解:∵四邊形ABCD是平行四邊形,AC=10,BD=8,
∴OA=OC=5,OD=OB=4,
在△OAB中,OA-OB<x<OA+OB,
∴5-4<x<4+5,
∴1<x<9.
故答案為:1<x<9.
點(diǎn)評(píng):本題考查了對(duì)平行四邊形的性質(zhì),三角形的三邊關(guān)系定理等知識(shí)點(diǎn)的理解和掌握,求出OA、OB后得出OA-OB<x<OA+OB是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線(xiàn)交CD于點(diǎn)E,∠ADC的平分線(xiàn)交AB于點(diǎn)F.試判斷AF與CE是否相等,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知如圖,在平行四邊形ABCD中,BN=DM,BE=DF.求證:四邊形MENF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鞍山一模)在平行四邊形ABCD中,∠DAB=60°,點(diǎn)E是AD的中點(diǎn),點(diǎn)O是AB邊上一點(diǎn),且AO=AE,過(guò)點(diǎn)E作直線(xiàn)HF交DC于點(diǎn)H,交BA的延長(zhǎng)線(xiàn)于F,以O(shè)E所在直線(xiàn)為對(duì)稱(chēng)軸,△FEO經(jīng)軸對(duì)稱(chēng)變換后得到△F′EO,直線(xiàn)EF′交直線(xiàn)DC于點(diǎn)M.
(1)求證:AD∥OF′;
(2)若M點(diǎn)在點(diǎn)H右側(cè),OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠B的平分線(xiàn)交AD于E,AE=10,ED=4,那么平行四邊形ABCD的周長(zhǎng)是
48
48

查看答案和解析>>

同步練習(xí)冊(cè)答案