【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC為直徑的半圓O交斜邊AB于點 D.
(1)證明:AD=3BD;
(2)求弧BD的長度;
(3)求陰影部分的面積.
【答案】(1)見解析;(2);(3)﹣
【解析】
(1)根據(jù)直角三角形的性質(zhì)以及圓周角和圓心角的性質(zhì)求出∠COD=120°,結(jié)合圓的基本性質(zhì)得出BC=2BD,再根據(jù)直角三角形中30°角的性質(zhì)得出AB=2BC=4BD,即可得出答案;
(2)根據(jù)弧長公式即可得出答案;
(3)根據(jù)割補法結(jié)合扇形的面積公式計算即可得出答案.
解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,
∴∠COD=120°,
∵BC=4,BC為半圓O的直徑,
∴∠CDB=90°,
∴∠BCD=30°,
∴BC=2BD,
∵∠A=30°,
∴AB=2BC=4BD,
∴AD=3BD;
(2)由(1)得∠B=60°,
∴OC=OD=OB=2,
∴弧BC的長為;
(3)∵BC=4,∠BCD=30°,
∴CD=BC=,
圖中陰影部分的面積=S扇形COD﹣S△COD=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知的三邊長為,,,有以下三個結(jié)論:(1)以,,為邊長的三角形一定存在;(2)以,,為邊長的三角形一定存在;(3)以,,為邊長的三角形一定存在.其中正確結(jié)論的個數(shù)是( ).
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB、DC相交于點E、F,且∠EAF=60°
(1)如圖1,當(dāng)點E是CB上任意一點時(點E不與B、C重合),求證:BE=CF;
(2)如圖2,當(dāng)點E在CB的延長線上時,且∠EAB=15°,求點F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊AD、AB的長分別為3、8,E是DC的中點,反比例函數(shù)y=的圖象經(jīng)過點E,與AB交于點F.
(1)若點B坐標為(﹣6,0),求圖象經(jīng)過A、E兩點的一次函數(shù)的表達式是_____;
(2)若AF﹣AE=2,則反比例函數(shù)的表達式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測量大樓AB的高度,他從點C出發(fā),沿著斜坡面CD走52米到點D處,測得大樓頂部點A的仰角為37°,大樓底部點B的俯角為45°,已知斜坡CD的坡度為i=1:2.4.大樓AB的高度約為( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. 32米B. 35米C. 36米D. 40米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).
(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時,a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n=5,求該直角三角形另兩邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,是射線上一點,以為圓心,的長為半徑作,使,是上一點,與相交于點,點與關(guān)于直線對稱,連接.
嘗試: (1)點在所在的圓 (填“內(nèi)”“上”或“外”);
(2) .
發(fā)現(xiàn) :(1)的最大值為 ;
(2)當(dāng),時,判斷與所在圓的位置關(guān)系.
探究:當(dāng)點與的距離最大時,求的長.(注:)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與雙曲線交于A、B兩點,點B坐標為(-4,-2),C為雙曲線上一點,且在第一象限內(nèi),若△AOC面積為6,則點C坐標為( )
A. (4,2) B. (2,3) C. (3,4) D. (2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;
(3)四邊形AA2C2C的面積是 平方單位.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com