29、如圖,Rt△ABC內(nèi)接于⊙O,∠A=30°,延長(zhǎng)斜邊AB到D,使BD等于⊙O半徑,求證:DC是⊙O切線.
分析:連OC,由∠A=30°,可得∠COB=60°,由此判斷△COB為等邊三角形,得到BC=BO,再由BD等于⊙O半徑,得到BC=BO=BD,因此可判斷△OCD為直角三角形,即∠OCB=90°.
解答:證明:連OC,如圖,
∵∠A=30°,OA=OC,
∴∠COB=60°,
∵△COB為等邊三角形,
∴BC=BO,
而B(niǎo)D等于⊙O半徑,
∴BC=BO=BD,
∴△OCD為直角三角形,即∠OCB=90°,
所以DC是⊙O切線.
點(diǎn)評(píng):本題考查了圓的切線的判定方法.若直線與圓有唯一的公共點(diǎn),則此直線是圓的切線;若圓心到直線的距離等于圓的半徑,則此直線是圓的切線;經(jīng)過(guò)半徑的外端點(diǎn)與半徑垂直的直線是圓的切線.當(dāng)已知直線過(guò)圓上一點(diǎn),要證明它是圓的切線,則要連接圓心和這個(gè)點(diǎn),證明這個(gè)連線與已知直線垂直即可;當(dāng)沒(méi)告訴直線過(guò)圓上一點(diǎn),要證明它是圓的切線,則要過(guò)圓心作直線的垂線,證明垂線段等于圓的半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC內(nèi)有三個(gè)內(nèi)接正方形,DF=18,GK=12,則PQ=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC內(nèi)接于⊙O,∠ACB的平分線分別交AB、⊙O于點(diǎn)D、E.
求證:CD•CE=AC•BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC內(nèi)接于⊙O.將⊙O沿直徑AC對(duì)折,B點(diǎn)落在圓上D點(diǎn)處.連接BD交AC于點(diǎn)E,過(guò)C點(diǎn)作BD的平行線交AD的延長(zhǎng)線于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=
35
,DF=3,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通)如圖.Rt△ABC內(nèi)接于⊙O,BC為直徑,AB=4,AC=3,D是
AB
的中點(diǎn),CD與AB的交點(diǎn)為E,則
CE
DE
等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案