【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=5,AB=8,求的值.
【答案】(1)證明見解析(2)證明見解析(3)
【解析】
試題分析:(1)根據(jù)兩組對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形相似證明即可;
(2)根據(jù)直角三角形的性質(zhì)得到CE=BE=AE,根據(jù)等腰三角形的性質(zhì)得到∠EAC=∠ECA,根據(jù)平行線的判定定理證明即可;
(3)證明△AFD∽△CFE,根據(jù)相似三角形的性質(zhì)定理列出比例式,解答即可.
試題解析:(1)∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴AD:AC=AC:AB,
∴AC2=ABAD;
(2)∵E為AB的中點(diǎn),
∴CE=BE=AE,
∴∠EAC=∠ECA,
∵∠DAC=∠CAB,
∴∠DAC=∠ECA,
∴CE∥AD;
(3)∵CE∥AD,
∴△AFD∽△CFE,
∴AD:CE=AF:CF,
∵CE=AB,
∴CE=×8=4,
∵AD=5,
∴,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各題運(yùn)算正確的是( )
A. 3x+3y=6xy B. x+x=x2
C. ﹣9y2+16y2=7 D. 9a2b﹣9a2b=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=2x+m的圖像與x軸相交于點(diǎn)A(-3,0),則m的值為( 。
A.-3B.6C.-6D.6或-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正比例函數(shù)y=(k-3)x的圖象經(jīng)過一、三象限,那么k的取值范圍是( )
A. k>0 B. k>3 C. k<0 D. k<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線 的圖象先向右平移2個(gè)單位,再向下平移3個(gè)單位,所得圖象的函數(shù)解析式為 ,則b、c的值為( ).
A.b=2, c=-6
B.b=2, c=0
C.b=-6, c=8
D.b=-6, c=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是BE上一點(diǎn),D是AC的中點(diǎn),且AB=AC,DE=DB,∠A=60°,△ABC的周長(zhǎng)是18cm。求∠E的度數(shù)及CE的長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,1),B(2,0),C(4,3).
(1)求ΔABC的面積;
(2)設(shè)點(diǎn)P在坐標(biāo)軸上,且ΔABP與ΔABC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com