如圖1是長方形紙袋,將紙袋沿EF折疊成圖2,再沿BF折疊成圖3,若∠DEF=α,用α表示圖3中∠CFE的大小為 _________。
180°-3α.
解析試題分析:先根據(jù)進(jìn)行的性質(zhì)得AD∥BC,則∠BFE=∠DEF=α,根據(jù)折疊的性質(zhì),把如圖1中的方形紙袋沿EF折疊成圖2,則∠MEF=α,把圖2沿BF折疊成圖3,則∠MFH=∠CFM,根據(jù)平行線的性質(zhì)由FH∥MG得到∠MFH=180°-∠FMG,再利用三角形外角性質(zhì)得∠FMG=∠MFE+∠MEF=2α,則∠MFH=180°-2α,所以∠CFM=180°-2α,然后利用∠CFE=∠CFM-∠EFM求解.
試題解析:
在圖1中,
∵四邊形ABCD為矩形,
∴AD∥BC,
∴∠BFE=∠DEF=α,
∵如圖1中的方形紙袋沿EF折疊成圖2,
∴∠MEF=α,
∵圖2再沿BF折疊成圖3,
∴在圖3中,∠MFH=∠CFM,
∵FH∥MG,
∴∠MFH=180°-∠FMG,
∵∠FMG=∠MFE+∠MEF=α+α=2α,
∴∠MFH=180°-2α,
∴∠CFM=180°-2α,
∴∠CFE=∠CFM-∠EFM=180°-2α-α=180°-3α.
考點(diǎn):翻折變換(折疊問題).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,AB∥CD,點(diǎn)E在BC上,且CD=CE,∠D=74°,則∠B的度數(shù)為
A.68° | B.32° | C.22° | D.16° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖a是長方形紙帶,∠DEF=24°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com