【題目】已知點(diǎn)P的坐標(biāo)為(2﹣a,3a+6),且點(diǎn)P到兩坐標(biāo)軸的距離相等,則a=_____
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校要用20m的籬笆,一面靠墻(墻長(zhǎng)10m),圍成一個(gè)矩形花圃,設(shè)矩形花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2.
(1)求出y與x的函數(shù)關(guān)系式.
(2)當(dāng)矩形花圃的面積為48m2時(shí),求x的值.
(3)當(dāng)邊長(zhǎng)x為多少時(shí),矩形的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x﹣4的圖象與x、y軸交于B、A兩點(diǎn),與y=的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,如果△CDB的面積:△AOB的面積=1:4,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O為△ABC的外接圓,過圓外一點(diǎn)P作⊙O的切線PA,且PA∥BC.
(1)如圖1,求證:△ABC為等腰三角形:
(2)如圖2,在AB邊上取一點(diǎn)E,AC邊上取一點(diǎn)F,直線EF交PA于點(diǎn)M,交BC的延長(zhǎng)線于點(diǎn)N,若ME=FN,求證:AE=CF;
(3)如圖3,在(2)的條件下,連接OE、OF,∠EOF=120°,,EF=,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)P(2,﹣3)且垂直于y軸的直線交y軸于點(diǎn)Q,那么Q點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】單項(xiàng)式-3xy2的系數(shù)和次數(shù)分別為( )
A. 3,1 B. -3,1 C. 3,3 D. -3,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是將菱形ABCD以點(diǎn)O為中心按順時(shí)針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形。若,AB=2,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,AE,BF交于點(diǎn)O,∠AOF=90°.
求證:BF=AE.
(2) 如圖2,正方形ABCD邊長(zhǎng)為12,將正方形沿MN折疊,使點(diǎn)A落在DC邊上的點(diǎn)E處,且DE=5,求折痕MN的長(zhǎng)。
(3) 已知點(diǎn)E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點(diǎn)O,
∠FOH=90°,EF=4. 直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個(gè)全等的正方形組成,則 GH=___________;
②如圖4,矩形ABCD由n個(gè)全等的正方形組成,則 GH=___________;(用n的代數(shù)式表示).
查看答案和解析>>