【題目】已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點 D、E 分別在邊AC、BC上,且CD:CE=3︰4.將△CDE繞點D順時針旋轉,當點C落在線段DE上的點 F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.
【答案】6
【解析】分析:設CD=3x,則CE=4x,BE=12﹣4x,依據∠EBF=∠EFB,可得EF=BE=12﹣4x,由旋轉可得DF=CD=3x,再根據Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(4x)2=(3x+12﹣4x)2,進而得出CD=6.
詳解:如圖所示,設CD=3x,則CE=4x,BE=12﹣4x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣4x,由旋轉可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=6.故答案為:6.
科目:初中數學 來源: 題型:
【題目】(1)已知:點A和點B(如圖1),根據條件畫圖(用三角板和量角器):
①畫射線BA;
②畫∠ABC=90°,使得點C在線段AB上方且AB=BC;
③連接AC,畫出∠ABC的角平分線BD,交AC于D.通過觀察、度量、猜想獲得線段BD、AC的關系.
(2)已知:如圖2,∠AOB=150,OC平分∠AOB,AO⊥DO,求∠COD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知平面直角坐標系(如圖),直線的經過點和點.
(1)求、的值;
(2)如果拋物線經過點、,該拋物線的頂點為點,求的值;
(3)設點在直線上,且在第一象限內,直線與軸的交點為點,如果,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】植樹節(jié)期間,市團委組織部分中學的團員去東岸濕地公園植樹.三亞市第二中學七(3)班團支部領到一批樹苗,若每人植4棵樹,還剩37棵;若每人植6棵樹,則最后一人有樹植,但不足3棵,這批樹苗共有_____棵.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1:y=﹣x+3與x軸相交于點A,直線l2:y=kx+b經過點(3,﹣1),與x軸交于點B(6,0),與y軸交于點C,與直線l1相交于點D.
(1)求直線l2的函數關系式;
(2)點P是l2上的一點,若△ABP的面積等于△ABD的面積的2倍,求點P的坐標;
(3)設點Q的坐標為(m,3),是否存在m的值使得QA+QB最。咳舸嬖,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=+1與x軸、y軸分別交于點A、B,以線AB為直角邊在第一象限內作等腰Rt△ABC,∠BAC=90o、點P(x、y)為線段BC上一個動點(點P不與B、C重合),設△OPA的面積為S。
(1)求點C的坐標;
(2)求S關于x的函數解析式,并寫出x的的取值范圍;
(3)△OPA的面積能于嗎,如果能,求出此時點P坐標,如果不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A在y軸的正半軸上,點C在x軸的正半軸上,線段OA,OC的長分別是m,n且滿足(m-6)2+=0,點D是線段OC上一點,將△AOD沿直線AD翻折,點O落在矩形對角線AC上的點E處
(1)求線段OD的長
(2)求點E的坐標
(3)DE所在直線與AB相交于點M,點N在x軸的正半軸上,以M、A、N、C為頂點的四邊形是平行四邊形時,求N點坐
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點B,直線l2經過點D(0,5),與直線l1交于點C(﹣1,m),且與x軸交于點A,
(1)求點C的坐標及直線l2的解析式;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com