【題目】麗水苛公司將麗水山耕農(nóng)副產(chǎn)品運(yùn)往杭州市場(chǎng)進(jìn)行銷售.記汽車行駛時(shí)間為t小時(shí),平均速度為v千米/小時(shí)(汽車行駛速度不超過100千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對(duì)應(yīng)值如下表:

v(千米/小時(shí))

75

80

85

90

95

t(小時(shí))

4.00

3.75

3.53

3.33

3.16

(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;

(2)汽車上午7:30從麗水出發(fā),能否在上午10:00之前到達(dá)杭州市?請(qǐng)說明理由:

(3)若汽車到達(dá)杭州市場(chǎng)的行駛時(shí)間t滿足3.5≤t≤4,求平均速度v的取值范圍.

【答案】(1)v= ;(2)汽車上午7:30從麗水出發(fā),不能在上午10:00之前到達(dá)杭州市場(chǎng);(3)平均速度v的取值范圍是75≤v≤

【解析】

(1)根據(jù)表格中數(shù)據(jù),可知vt的反比例函數(shù),設(shè)v=,利用待定系數(shù)法求出k即可;
(2)根據(jù)時(shí)間t=2.5,求出速度,即可判斷;
(3)根據(jù)自變量的取值范圍,求出函數(shù)值的取值范圍即可;

(1)解:(1)根據(jù)表中的數(shù)據(jù),可畫出v關(guān)于t的函數(shù)圖象(如圖所示),

根據(jù)圖象形狀,選擇反比例函數(shù)模型進(jìn)行嘗試.設(shè)vt的函數(shù)表達(dá)式為v= ,

∵當(dāng)v=75時(shí),t=4,k=4×75=300.

v= .

將點(diǎn)(3.75,80),(3.53,85),(3.33,90),(3.16,95)的坐標(biāo)代入v= 驗(yàn)證:

, ,

vt的函數(shù)表達(dá)式為v= .

(2)解:∵10-7.5=2.5,

∴當(dāng)t=2.5時(shí),v= =120>100.

∴汽車上午7:30從麗水出發(fā),不能在上午10:00之前到達(dá)杭州市場(chǎng).

(3)解:由圖象或反比例函數(shù)的性質(zhì)得,當(dāng)3.5≤t≤4時(shí),75≤v≤ .

答案:平均速度v的取值范圍是75≤v≤ .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,點(diǎn)E、F、G分別為邊AB、BC、CD的中點(diǎn),若EFG的面積為4,則四邊形ABCD的面積為( 。

A. 8 B. 12 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖某小船準(zhǔn)備從處出發(fā),沿北偏東的方向航行,在規(guī)定的時(shí)間將一批物資運(yùn)往處的貨船上,后考慮這條航線可能會(huì)因退潮而使小船擱淺,決定改變航線,從處出發(fā)沿正東方向航行海里到達(dá)處,再由處沿北偏東的方向航行到達(dá)處.

(1)小船由經(jīng)到達(dá)走了多少海里(結(jié)果精確到海里);

(2)為了按原定時(shí)間到達(dá)處的貨船上,小船提速,每小時(shí)增加海里,求小船原定的速度(結(jié)果精確到海里/時(shí)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).

(1)求k、m的值;

(2)已知點(diǎn)P(n,n)(n>0),過點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.

①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;

②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為4,EAB的中點(diǎn),FAD上一點(diǎn),且AF=AD,試判斷△EFC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tanACO=2.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的實(shí)數(shù)),其中正確結(jié)論的個(gè)數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,ABAC4,∠BAC100°,點(diǎn)D是底邊BC的動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),連接AD,作∠ADE40°,DEAC交于點(diǎn)E

1)當(dāng)DC等于多少時(shí),△ABD與△DCE全等?請(qǐng)說明理由;

2)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求出∠BDA的度數(shù);若不可以,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,等邊△ABC的邊長(zhǎng)為8,DAC上的一個(gè)動(dòng)點(diǎn),延長(zhǎng)AB到點(diǎn)E,使BE=CD,連接DEBC于點(diǎn)P

1)求證:DP=EP;

2)若DAC的中點(diǎn),求BP的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案