(2013•永州模擬)如圖,△ABC內(nèi)接于⊙O,AD是⊙O直徑,E是CB延長(zhǎng)線(xiàn)上一點(diǎn),且∠BAE=∠C.
(1)求證:直線(xiàn)AE是⊙O的切線(xiàn);
(2)若EB=AB,cosE=
45
,AE=24,求EB的長(zhǎng)及⊙O的半徑.
分析:(1)根據(jù)圓周角定理以及直徑所對(duì)圓周角得出∠1+∠D=90°,進(jìn)而得出∠DAE=90°,即可得出直線(xiàn)AE是⊙O的切線(xiàn);
(2)根據(jù)銳角三角函數(shù)關(guān)系得出EB=
EF
cosE
進(jìn)而得出即可,再設(shè)BD=4k,則AD=5k.在Rt△ABD中,由勾股定理得:AB=3k,即可得出k的值,進(jìn)而得出答案.
解答:(1)證明:連接BD.
∵AD是⊙O的直徑,
∴∠ABD=90°.
∴∠1+∠D=90°.
∵∠C=∠D,∠C=∠BAE,
∴∠D=∠BAE.
∴∠1+∠BAE=90°.
即∠DAE=90°.
∵AD是⊙O的直徑,
∴直線(xiàn)AE是⊙O的切線(xiàn).

(2)解:過(guò)點(diǎn)B作BF⊥AE于點(diǎn)F,則∠BFE=90°.
∵EB=AB,
∴∠E=∠BAE,EF=
1
2
AE=
1
2
×24=12.
∵∠BFE=90°,cosE=
4
5
,
EB=
EF
cosE
=
5
4
×12
=15.
∴AB=15.
由(1)∠D=∠BAE,又∠E=∠BAE,
∴∠D=∠E.
∵∠ABD=90°,
cosD=
BD
AD
=
4
5

設(shè)BD=4k,則AD=5k.
在Rt△ABD中,∠ABD=90°,由勾股定理得:
AB=
AD2-BD2
=3k,可求得k=5.
∴AD=25.
∴⊙O的半徑為
25
2
點(diǎn)評(píng):此題主要考查了圓的綜合應(yīng)用以及銳角三角形有關(guān)計(jì)算和圓周角定理等知識(shí),根據(jù)已知得出BE=
EF
cosE
是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•永州模擬)一個(gè)圓錐的底面半徑為3cm,高為4cm,則這個(gè)圓錐的表面積為
24πcm2
24πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•永州模擬)下列如圖是由5個(gè)相同大小的正方體搭成的幾何體,則它的俯視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•永州模擬)如圖,在四邊形ABCD中,∠ADB=∠CBD=90°,BE∥CD交AD于E,且EA=EB.若AB=4
5
,DB=4,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•永州模擬)如圖,拋物線(xiàn)y=mx2+2mx-3m(m≠0)的頂點(diǎn)為H,與x軸交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè)),點(diǎn)H、B關(guān)于直線(xiàn)l:y=
3
3
x+
3
對(duì)稱(chēng),過(guò)點(diǎn)B作直線(xiàn)BK∥AH交直線(xiàn)l于K點(diǎn).
(1)求A、B兩點(diǎn)坐標(biāo),并證明點(diǎn)A在直線(xiàn)l上;
(2)求此拋物線(xiàn)的解析式;
(3)將此拋物線(xiàn)向上平移,當(dāng)拋物線(xiàn)經(jīng)過(guò)K點(diǎn)時(shí),設(shè)頂點(diǎn)為N,直接寫(xiě)出NK的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案