【題目】如圖,G是邊長為8的正方形ABCD的邊BC上的一點,矩形DEFG的邊EF過點A,GD=10.

(1)求FG的長;
(2)直接寫出圖中與△BHG相似的所有三角形.

【答案】
(1)解:在正方形ABCD和矩形DEFG中,∠E=∠C=90°,

∵∠EDA與∠CDG均為∠ADG的余角,

∴∠EDA=∠CDG,

∴△DEA∽△DCG,

∵ED=FG,

∵GD=10,AD=CD=8,

∴FG=6.4;


(2)解:△AFH,△DCG,△DEA,△GBH均是相似三角形.
【解析】(1)根據(jù)已知條件正方形和矩形的性質(zhì)得到△DEA∽△DCG,得到比例求出FG的長;(2)根據(jù)兩角相等兩三角形相似,直接寫出結(jié)論.
【考點精析】關于本題考查的相似三角形的判定與性質(zhì),需要了解相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某籃球興趣小組有15名同學,在一次投籃比賽中,他們的成績?nèi)缬颐娴臈l形圖所示.這15名同學進球數(shù)的眾數(shù)和中位數(shù)分別是( 。

A. 10,7 B. 7,7 C. 9,9 D. 9,7

【答案】D

【解析】試題根據(jù)眾數(shù)與中位數(shù)的定義分別進行解答即可.

解:由條形統(tǒng)計圖給出的數(shù)據(jù)可得:9出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是9;

把這組數(shù)據(jù)從小到達排列,最中間的數(shù)是7,則中位數(shù)是7

故選D

考點:眾數(shù);條形統(tǒng)計圖;中位數(shù).

型】單選題
結(jié)束】
4

【題目】都在直線上,且,則的關系是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育文化用品商店購進籃球和排球共20個,進價和售價如下表所示,全部銷售完后共獲利潤260.

1)購進籃球和排球各多少個?

2)銷售6個排球的利潤與銷售幾個籃球的利潤相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B兩地相距4千米.上午800,甲從A地出發(fā)步行到B地,820乙從B地出發(fā)騎自行車到A地,甲、乙兩人離A地的距離(千米)與甲所用的時間(分)之間的關系如圖所示.由圖中的信息可知,乙到達A地的時間為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+4的圖象與xy軸分別交于點A、點B,與正比例函數(shù)yx的圖象交于點C,將點C向右平移1個單位,再向下平移6個單位得點D

1)求△OAB的周長;

2)求經(jīng)過D點的反比例函數(shù)的解析式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料解決問題

兩個多位數(shù)整數(shù),若它們各數(shù)位上的數(shù)字之和相等,則稱這兩個多位數(shù)互為“調(diào)和數(shù)”,例如3782,它們各數(shù)位上的數(shù)字之和分別為3+78+2,顯然3+78+2103782互為“調(diào)和數(shù)”.

1)下列說法錯誤的是

A.12351互為調(diào)和數(shù)” B.345513互為“調(diào)和數(shù)

C.20188120互為“調(diào)和數(shù)” D.兩位數(shù)互為“調(diào)和數(shù)”

2)若AB是兩個不等的兩位數(shù),A,B,AB互為“調(diào)和數(shù)”,且AB之和是BA之差的3倍,求滿足條件的兩位數(shù)A

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一條長為18的繩子圍成一個等腰三角形.

1)若等腰三角形有一條邊長為4,它的其它兩邊是多少?

2)若等腰三角形的三邊長都為整數(shù),請直接寫出所有能圍成的等腰三角形的腰長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB90°,∠DAE=∠ABC30°,E、A、C三點在一條直線上,連接BD,取BD中點M,連接MEMC,試判斷EMC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在邊長為4cm正方形 ABCD 中,點P從點A出發(fā),沿AB→BC的路徑勻速運動,到點C停止.過點PPQBD,PQ與邊AD(或邊CD)交于點Q,PQ的長度ycm)與點P的運動時圖象如圖②所示.當P運動2.5s時,PQ的長為(

A.cmB.cmC.cmD.cm

查看答案和解析>>

同步練習冊答案