【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是(

A.CB=CD
B.∠BAC=∠DAC
C.∠BCA=∠DCA
D.∠B=∠D=90°

【答案】C
【解析】解:A、添加CB=CD,根據(jù)SSS,能判定△ABC≌△ADC,故A選項不符合題意;B、添加∠BAC=∠DAC,根據(jù)SAS,能判定△ABC≌△ADC,故B選項不符合題意;
C、添加∠BCA=∠DCA時,不能判定△ABC≌△ADC,故C選項符合題意;
D、添加∠B=∠D=90°,根據(jù)HL,能判定△ABC≌△ADC,故D選項不符合題意;
故選:C.
本題要判定△ABC≌△ADC,已知AB=AD,AC是公共邊,具備了兩組邊對應(yīng)相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分別根據(jù)SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后則不能.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解中考體育科目訓(xùn)練情況,某區(qū)從九年級學(xué)生中抽取了部分學(xué)生進(jìn)行了一次中考體育科測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次抽樣測試的學(xué)生人數(shù)是

2)圖1中∠α的度數(shù)是 ,并把圖2條形統(tǒng)計圖補(bǔ)充完整;

3)該區(qū)九年級有學(xué)生4000名,如果全部參加這次體育測試,請估計不及格的人數(shù)為 ;

4)測試?yán)蠋熛霃?/span>4位同學(xué)(分別記為E、F、G、H,其中E為小明)中隨機(jī)選擇兩位同學(xué)了解平時訓(xùn)練情況,請用列表或畫樹狀圖的方法求出選中小明的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察探究及應(yīng)用.

(1)觀察圖形并填空:

一個四邊形有________條對角線;

一個五邊形有________條對角線;

一個六邊形有________對角線;

一個七邊形有________對角線;

(2)分析探究:

由凸n邊形的一個頂點出發(fā),可作_________條對角線,多邊形有n個頂點,若允許重復(fù)計數(shù),共可作_______條對角線;

(3)結(jié)論:

一個凸n邊形有條對角線;

(4)應(yīng)用:

一個凸十二邊形有多少條對角線?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1) +
(2)( + 2
(3) +(1﹣ 0
(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)如圖1.

①若∠AOC=60°,求∠DOE的度數(shù);

②若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的式子表示);

(2)將圖1中的∠DOC繞點O順時針旋轉(zhuǎn)至圖2的位置,試探究∠DOE和∠AOC的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點O為直線AB上一點,過點O作射線OC,使BOC=65°,將一直角三角板的直角頂點放在點O處.

(1)如圖①,將三角板MON的一邊ON與射線OB重合時,則MOC= ;

(2)如圖②,將三角板MON繞點O逆時針旋轉(zhuǎn)一定角度,此時OC是MOB的角平分線,求旋轉(zhuǎn)角BONCON的度數(shù);

(3)將三角板MON繞點O逆時針旋轉(zhuǎn)至圖③時,NOC=AOM,求NOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】奧運(yùn)會射擊比賽冠軍在以后的某次比賽中,“有一槍脫靶”,這一事件是__________(填不可能事件、必然事件或隨機(jī)事件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(分類討論思想)已知直線l是線段AB的垂直平分線,點M,N是直線l上的兩點,如果∠NBA=15°,∠MBA=45°,則∠MAN=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:﹣32×(﹣5)+16÷(﹣23﹣|﹣4×5|

查看答案和解析>>

同步練習(xí)冊答案