數(shù)學公式=________(結果中若有根號,則保留根號)


分析:根據(jù)特殊角的三角函數(shù)值和二次根式的化簡得到原式=(1-)+,然后去括號合并即可.
解答:原式=(1-)+
=-+
=
故答案為
點評:本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,再進行二次根式的乘除運算,然后合并同類二次根式.也考查了特殊角的三角函數(shù)值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,點A的坐標為(-2,0),連接OA,將線段OA繞原點O順時針旋轉120°,得到線段OB.
(1)求點B的坐標;
(2)求經(jīng)過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
(注意:本題中的結果均保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2
(tan45°-sin60°)+
24
4
=
2
2
(結果中若有根號,則保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•瀘州)如圖,在直角坐標系中,點A的坐標為(-2,0),點B的坐標為(1,-
3
),已知拋物線y=ax2+bx+c(a≠0)經(jīng)過三點A、B、O(O為原點).
(1)求拋物線的解析式;
(2)在該拋物線的對稱軸上,是否存在點C,使△BOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(3)如果點P是該拋物線上x軸上方的一個動點,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.(注意:本題中的結果均保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》?碱}集(22):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在直角坐標系中,點A的坐標為(-2,0),連接OA,將線段OA繞原點O順時針旋轉120°,得到線段OB.
(1)求點B的坐標;
(2)求經(jīng)過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
(注意:本題中的結果均保留根號).

查看答案和解析>>

同步練習冊答案