精英家教網 > 初中數學 > 題目詳情

【題目】二次函數y=ax2+bx的圖象如圖,若一元二次方程ax2+bx+m=0有實數根,則m的最大值為(  )

A.-3
B.3
C.-6
D.9

【答案】B
【解析】解:(法1)∵拋物線的開口向上,頂點縱坐標為﹣3,
∴a>0, =﹣3,即b2=12a,
∵一元二次方程ax2+bx+m=0有實數根,
∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,
∴m的最大值為3.
(法2)一元二次方程ax2+bx+m=0有實數根,
可以理解為y=ax2+bx和y=﹣m有交點,
可見﹣m≥﹣3,
∴m≤3,
∴m的最大值為3.
故選B.

【考點精析】根據題目的已知條件,利用拋物線與坐標軸的交點的相關知識可以得到問題的答案,需要掌握一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某數學興趣小組在全校范圍內隨機抽取了50名同學進行“舌尖上的長沙﹣我最喜愛的長沙小吃”調查活動,將調查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:

請根據所給信息解答以下問題:
(1)請補全條形統(tǒng)計圖;
(2)若全校有2000名同學,請估計全校同學中最喜愛“臭豆腐”的同學有多少人?
(3)在一個不透明的口袋中有四個完全相同的小球,把它們分別標號為四種小吃的序號A、B、C、D,隨機地摸出一個小球然后放回,再隨機地摸出一個小球,請用列表或畫樹形圖的方法,求出恰好兩次都摸到“A”的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“佳佳商場”在銷售某種進貨價為20元/件的商品時,以30元/件售出,每天能售出100件.調查表明:這種商品的售價每上漲1元/件,其銷售量就將減少2件.
(1)為了實現每天1600元的銷售利潤,“佳佳商場”應將這種商品的售價定為多少?
(2)物價局規(guī)定該商品的售價不能超過40元/件,“佳佳商場”為了獲得最大的利潤,應將該商品售價定為多少?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學錯將“2A﹣B“看成”2A+B“,算得結果為4a2b3ab2+4abc

(1)計算B的表達式;

(2)求出2AB的結果;

(3)小強同學說(2)中的結果的大小與c的取值無關,對嗎?若a=b=,

(2)中式子的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2013年9月23日強臺風“天兔”登錄深圳,伴隨著就是狂風暴雨.梧桐山山坡上有一棵與水平面垂直的大樹,臺風過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示).已知山坡的坡角∠AEF=23°,量得樹干的傾斜角為∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=3m.
(1)求∠DAC的度數;
(2)求這棵大樹折斷前的高度.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,AB在數軸上對應的數分別用a,b表示,且(ab+1002+|a20|=0,P是數軸上的一個動點.

1)在數軸上標出A、B的位置,并求出AB之間的距離.

2)已知線段OB上有點C|BC|=6,當數軸上有點P滿足PB=2PC時,求P點對應的數.

3)動點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度第四次向右移動7個單位長度,.點P能移動到與AB重合的位置嗎?若都不能,請直接回答.若能,請直接指出,第幾次移動與哪一點重合?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在數軸上,點A向右移動1個單位得到點B,點B向右移動(n+1)(n為正整數)個單位得到點C,點A,B,C分別表示有理數a,b,c,

(1)當n=1時,

A,B,C三點在數軸上的位置如圖所示,a,b,c三個數的乘積為正數,數軸上原點的位置可   

A.在點A左側或在A,B兩點之間 B.在點C右側或在A,B兩點之間

C.在點A左側或在B,C兩點之間 D.在點C右側或在B,C兩點之間

若這三個數的和與其中的一個數相等,求a的值;

(2)將點C向右移動(n+2)個單位得到點D,點D表示有理數d,a、b、c、d四個數的積為正數,這四個數的和與其中的兩個數的和相等,且a為整數,請在數軸上標出點D并用含n的代數式表示a.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.(參考數據:≈1.41,≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線l上有三個正方形a,b,c,a,c的面積分別為511,則b的面積為(

A. 16 B. 6 C. 55 D. 26

查看答案和解析>>

同步練習冊答案