【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)y2=的圖象分別交于C、D兩點(diǎn),點(diǎn)D(2,﹣3),點(diǎn)B是線段AD的中點(diǎn).
(1)求一次函數(shù)y1=k1x+b與反比例函數(shù)y2=的解析式;
(2)求△COD的面積;
(3)直接寫出時(shí)自變量x的取值范圍.
(4)動(dòng)點(diǎn)P(0,m)在y軸上運(yùn)動(dòng),當(dāng)的值最大時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1) ,y2=;(2)S△COD =;(3)當(dāng)x<-4或0<x<2時(shí),y1>y2;(4)點(diǎn)P的坐標(biāo) (0, ).
【解析】試題分析:(1)把點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法即可求得反比例函數(shù)的解析式,作軸于,根據(jù)題意求得的坐標(biāo),然后利用待定系數(shù)法求得一次函數(shù)的解析式;
(2)聯(lián)立方程求得的坐標(biāo),然后根據(jù)即可求得的面積;
(3)根據(jù)圖象即可求得.
作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),延長交軸于點(diǎn)點(diǎn)即為所求.
試題解析:∵點(diǎn)D(2,3)在反比例函數(shù)的圖象上,
作DE⊥x軸于E,
∵D(2,3),點(diǎn)B是線段AD的中點(diǎn),
∴A(2,0),
∵A(2,0),D(2,3)在的圖象上,
解得
(2)由解得
(3)當(dāng)x<4或0<x<2時(shí),
(4)關(guān)于軸的對(duì)稱點(diǎn),延長交軸于點(diǎn)
∴直線為
當(dāng)時(shí),
∴點(diǎn)P的坐標(biāo)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某電信公司計(jì)劃在A,B兩鄉(xiāng)鎮(zhèn)間的E處修建一座5G信號(hào)塔,且使C,D兩個(gè)村莊到E的距離相等.已知AD⊥AB于點(diǎn)A,BC⊥AB于點(diǎn)B,AB=80km,AD=50km,BC=30km,求5G信號(hào)塔E應(yīng)該建在離A鄉(xiāng)鎮(zhèn)多少千米的地方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點(diǎn)B.
(1)求a的值,并寫出拋物線的表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,
①當(dāng)點(diǎn)M(2,n)時(shí),求n,并求△ABM的面積.
②當(dāng)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值和此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)把下面的證明補(bǔ)充完整:
如圖,已知直線EF分別交直線AB、CD于點(diǎn)M、N,AB∥CD,MG平分∠EMB,NH平分∠END.求證:MG∥NH
證明:∵AB∥CD(已知)
∴∠EMB=∠END( )
∵MG平分∠EMB,NH平分∠END(已知),
∴∠EMG=∠EMB,∠ENH=∠END( ),
∴ (等量代換)
∴MG∥NH( ).
(2)你在第(1)小題的證明過程中,應(yīng)用了哪兩個(gè)互逆的真命題?請(qǐng)直接寫出這一對(duì)互逆的真命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】整體思想就是通過研究問題的整體形式從面對(duì)問題進(jìn)行整體處理的解題方法.如,此題設(shè)“,”,得方程,解得,.利用整體思想解決問題:采采家準(zhǔn)備裝修-廚房,若甲,乙兩個(gè)裝修公司,合做需周完成,甲公司單獨(dú)做4周后,剩下的由乙公司來做,還需周才能完成,設(shè)甲公司單獨(dú)完成需周,乙公司單獨(dú)完成需周,則得到方程_______.利用整體思想 ,解得__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=5,求△ADE的周長.
(2)若∠BAD+∠CAE=60°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=β度,∠ABC與∠ACD的平分線交于點(diǎn)A1,得∠A1;∠A1BC與∠A1CD的平分線交于點(diǎn)A2,得∠A2,…∠A2017BC與∠A2017CD的平分線交于點(diǎn)A2018,得∠A2018.則∠A2018=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線m:y=x2﹣2x+2與直線l:y=x+2交于A,B(A在B的左側(cè)),且拋物線頂點(diǎn)為C.
(1)求A,B,C坐標(biāo);
(2)若點(diǎn)D為該拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AC下方,當(dāng)以A,C,D為頂點(diǎn)的三角形面積最大時(shí),求點(diǎn)D的坐標(biāo)及此時(shí)三角形的面積.
(3)將拋物線m:y=x2﹣2x+2沿直線OC方向平移得拋物線m′,與直線l:y=x+2交于A′,B′,問在平移過程中線段A′B′的長度是否發(fā)生變化,請(qǐng)通過計(jì)算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC邊的中點(diǎn),將△ABE沿AE所在直線折疊得到△AGE,延長AG交CD于點(diǎn)F,已知CF=2,FD=1,則BC的長是( 。
A.3B.2C.2D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com