【題目】如圖,點(diǎn)A,D,CF在同一條直線上,ADCFABDE,BCEF.

(1)求證:△DEF≌△ABC.

(2)若∠A52°,∠B88°,求∠F的度數(shù).

【答案】(1)證明見解析;(2)F=40°.

【解析】

1)求出AC=DF,根據(jù)SSS推出△ABC≌△DEF;

2)由(1)中全等三角形的性質(zhì)得到:∠A=EDF,進(jìn)而得出結(jié)論即可.

(1)證明:∵AC=AD+DC,DF=DC+CF,

AD=CF

AC=DF

在△ABC和△DEF中,

∴△ABC≌△DEF(SSS)

(2)(1)可知,∠F=ACB

∵∠A=52°,∠B=88°

∴∠ACB=180°-(A+B)

=180°-(52°+88°)

=40°

∴∠F=ACB=40°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)yk1xb1k1≠0)的圖象為直線l1,一次函數(shù)yk2xb2k2≠0)的圖象為直線l2,若k1k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.

解答下面的問題:

1)求過點(diǎn)P14)且與已知直線y=-2x1平行的直線的函數(shù)表達(dá)式,并畫出直線l的圖象;

2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線ykxt ( t0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)A,0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,DBA=60°,把ABD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)使得點(diǎn)A落在BD上,點(diǎn)A對(duì)稱點(diǎn)為點(diǎn)A1,點(diǎn)D對(duì)稱點(diǎn)為點(diǎn)D1,A1 D1與BC交于點(diǎn)E,連接D1C.

(1)求證:EC=EA1

(2)求證:點(diǎn)D1、C、D在同一直線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰 RtABC 中,∠BAC90°ADBC D,∠ABC 的平分線分別交 ACAD E,F,點(diǎn)M EF 的中點(diǎn),AM 的延長(zhǎng)線交 BC N,連接 DM,NF,EN.下列結(jié)論:①△AFE為等腰三角形;②△BDF≌△ADN;③NF所在的直線垂直平分AB;④DM平分∠BMN;⑤AEENNC;⑥.其中正確結(jié)論的個(gè)數(shù)是( )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿著CE翻折,使點(diǎn)A落在點(diǎn)D處,CDAB交于點(diǎn)F,恰好有CE=CF,若DF=6,AF=14,則tanCEF=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商城銷售A,B兩種自行車,A型自行車售價(jià)為2200/輛,B型自行車售價(jià)為1750/輛,每輛A型自行車的進(jìn)價(jià)比每輛B型自行車的進(jìn)價(jià)多400元,商城用80000元購(gòu)進(jìn)A型自行車的數(shù)量與用64000元購(gòu)進(jìn)B型自行車的數(shù)量相等.

(1)求A,B兩種自行車的進(jìn)價(jià)分別是多少元/輛?

(2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種自行車共100輛,設(shè)購(gòu)進(jìn)A型自行車m輛,這100輛自行車的銷售總利潤(rùn)為w元,要求購(gòu)進(jìn)B型自行車數(shù)量不少于A型自行車數(shù)量的2倍,且A型車輛至少30輛,請(qǐng)用含m的代數(shù)式表示w,并求獲利最大的方案以及最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x經(jīng)過點(diǎn)Am6),點(diǎn)B坐標(biāo)為(4,0).

1)求點(diǎn)A的坐標(biāo);

2)若P為射線OA上的一點(diǎn),當(dāng)ΔPOB是直角三角形時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明(視為小黑點(diǎn))站在一個(gè)高為10米的高臺(tái)A上,利用旗桿OM頂部的繩索,劃過90°到達(dá)與高臺(tái)A水平距離為17米,高為3米的矮臺(tái)B.那么小明在蕩繩索的過程中離地面的最低點(diǎn)的高度MN是(

A.2B.2.2C.2.5D.2.7

查看答案和解析>>

同步練習(xí)冊(cè)答案