(1)如圖,若在△ABC中有三個(gè)內(nèi)接正方形,其邊長(zhǎng)分別為a=7,b=5,c=2。試證明∠ACB為直角;
(2)如圖,若在Rt△ABC中,∠ACB=90°,在其中內(nèi)接有三個(gè)邊長(zhǎng)分別為a,b,c的小正方形,若b=7,c=3,試求出a的值。
解:(1)證得△GNM≌△QPF,
證得∠ACB=90°;
(2)證得△GNM∽△QPF,
得a=10。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把一邊長(zhǎng)為40cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)募舨,折成一個(gè)長(zhǎng)方形盒子(紙板的厚度忽略不計(jì)).如圖,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方形盒子.

(1)要使折成的長(zhǎng)方形盒子的底面積為324cm2,那么剪掉的正方形的邊長(zhǎng)為多少?
(2)折成的長(zhǎng)方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興)把一邊長(zhǎng)為40cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)募舨茫鄢梢粋(gè)長(zhǎng)方形盒子(紙板的厚度忽略不計(jì)).
(1)如圖,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方形盒子.
①要使折成的長(zhǎng)方形盒子的底面積為484cm2,那么剪掉的正方形的邊長(zhǎng)為多少?
②折成的長(zhǎng)方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個(gè)有蓋的長(zhǎng)方形盒子,若折成的一個(gè)長(zhǎng)方形盒子的表面積為550cm2,求此時(shí)長(zhǎng)方形盒子的長(zhǎng)、寬、高(只需求出符合要求的一種情況).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把一張邊長(zhǎng)為40cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)夭眉,折成一個(gè)長(zhǎng)方體盒子(紙板的厚度忽略不計(jì)).如圖,若在正方形硬紙板的四角各剪掉一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方體盒子.要使折成的長(zhǎng)方體盒子底面周長(zhǎng)為120cm.那么剪掉的正方形的邊長(zhǎng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若在象棋盤上建立直角坐標(biāo)系,使“帥”位于點(diǎn)(-1,-2),“馬”位于點(diǎn)(2,-2).
(1)畫出所建立的直角坐標(biāo)系;         
(2)寫出“兵”位于的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若在象棋盤上建立直角坐標(biāo)系,使“帥”位于點(diǎn)(-1,-2),“馬”位于點(diǎn)(2,-2),則“兵”位于點(diǎn)
(-3,1)
(-3,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案