(2006•南京)在平面直角坐標(biāo)系中,直線l過點M(3,0),且平行于y軸.
(1)如果△ABC三個頂點的坐標(biāo)分別是A(-2,0),B(-1,0),C(-1,2),△ABC關(guān)于y軸的對稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對稱圖形是△A2B2C2,寫出△A2B2C2的三個頂點的坐標(biāo);
(2)如果點P的坐標(biāo)是(-a,0),其中a>0,點P關(guān)于y軸的對稱點是P1,點P1關(guān)于直線l的對稱點是P2,求PP2的長.

【答案】分析:(1)根據(jù)關(guān)于y軸對稱點的坐標(biāo)特點是橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同可以得到△A1B1C1各點坐標(biāo),又關(guān)于直線l的對稱圖形點的坐標(biāo)特點是縱坐標(biāo)相同,橫坐標(biāo)之和等于3的二倍,由此求出△A2B2C1的三個頂點的坐標(biāo);
(2)P與P1關(guān)于y軸對稱,利用關(guān)于y軸對稱點的特點:縱坐標(biāo)不變,橫坐標(biāo)變?yōu)橄喾磾?shù),求出P1的坐標(biāo),再由直線l的方程為直線x=3,利用對稱的性質(zhì)求出P2的坐標(biāo),即可PP2的長.
解答:解:(1)△A2B2C2的三個頂點的坐標(biāo)分別是A2(4,0),B2(5,0),C2(5,2);(3分)

(2)如圖1,當(dāng)0<a≤3時,∵P與P1關(guān)于y軸對稱,P(-a,0),
∴P1(a,0),
又∵P1與P2關(guān)于l:直線x=3對稱,
設(shè)P2(x,0),可得:=3,即x=6-a,
∴P2(6-a,0),
則PP2=6-a-(-a)=6-a+a=6.
如圖2,當(dāng)a>3時,
∵P與P1關(guān)于y軸對稱,P(-a,0),
∴P1(a,0),
又∵P1與P2關(guān)于l:直線x=3對稱,
設(shè)P2(x,0),可得:=3,即x=6-a,
∴P2(6-a,0),
則PP2=6-a-(-a)=6-a+a=6.
點評:動手操作既是數(shù)學(xué)活動的一種形式,也是考查學(xué)生對概念理解與操作技能掌握情況的一種有效方式.本題設(shè)置了軸對稱變化和點的坐標(biāo)變化的有關(guān)問題,對于考查目標(biāo)的實現(xiàn)具有很好的作用.題目的背景清晰、明快,設(shè)計自然、合理,尤其是第(2)小題設(shè)置的問題既具有一定的開放性又重點考查了分類的數(shù)學(xué)思想,使試題的考查有較高的效度.發(fā)揮了試題的整體效應(yīng):概念理解與操作技能掌握情況.本題一個考查學(xué)生“軸對稱”與坐標(biāo)的相關(guān)知識的試題,學(xué)生可以根據(jù)自己的理解選擇自由發(fā)揮的空間,問題的解決為學(xué)生提供了自主探索的空間,考查了學(xué)生關(guān)于變換與坐標(biāo)知識的綜合運用能力.其解決的過程體現(xiàn)了數(shù)學(xué)內(nèi)在的和諧美,體現(xiàn)了對學(xué)生“操作--發(fā)現(xiàn)--猜想”的能力的考查,注意了題目的可推廣性,由學(xué)生解答本題的情況可以推及學(xué)生具有這些特質(zhì)的情形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2006•南京)在平面直角坐標(biāo)系中,直線l過點M(3,0),且平行于y軸.
(1)如果△ABC三個頂點的坐標(biāo)分別是A(-2,0),B(-1,0),C(-1,2),△ABC關(guān)于y軸的對稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對稱圖形是△A2B2C1,那么△A2B2C1的三個頂點的坐標(biāo)分別為A2
(4,0)
(4,0)
B2
(5,0)
(5,0)
C2
(5,2)
(5,2)
;
(2)如果點P的坐標(biāo)是(-a,0),其中a>0,點P關(guān)于y軸的對稱點是P1,點P1關(guān)于直線l的對稱點是P2,那么PP2的長為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省南京市白下區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2006•南京)在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點A,B,D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點C的坐標(biāo)是( )

A.(3,7)
B.(5,3)
C.(7,3)
D.(8,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省揚(yáng)州中學(xué)樹人學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2006•南京)在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點A,B,D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點C的坐標(biāo)是( )

A.(3,7)
B.(5,3)
C.(7,3)
D.(8,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(01)(解析版) 題型:選擇題

(2006•南京)在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點A,B,D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點C的坐標(biāo)是( )

A.(3,7)
B.(5,3)
C.(7,3)
D.(8,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•南京)在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點A,B,D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點C的坐標(biāo)是( )

A.(3,7)
B.(5,3)
C.(7,3)
D.(8,2)

查看答案和解析>>

同步練習(xí)冊答案