【題目】如圖,△ABC中,∠B=90°,tan∠BAC=,半徑為2的⊙O從點A開始(圖1),沿AB向右滾動,滾動時始終與AB相切(切點為D);當圓心O落在AC上時滾動停止,此時⊙O與BC相切于點E(圖2).作OG⊥AC于點G.
(1)利用圖2,求cos∠BAC的值;
(2)當點D與點A重合時(如圖1),求OG;
(3)如圖3,在⊙O滾動過程中,設AD=x,請用含x的代數(shù)式表示OG,并寫出x的取值范圍.
【答案】(1)cos∠BAC=;(2)OG=;(3)OG=﹣x+,x的取值范圍是:0≤x≤4.
【解析】整體分析:
(1)連接OD,Rt△AOD中用勾股定理求OA,用余弦的定義求解;(2)連接OA,則∠AOG=∠BAC,在Rt△OAG中,用∠AOG的余弦求解;(3)連接OD交AC于點F,用x表示出OF,由∠FOG=∠BAC,利用∠FOG的余弦求解.
解:(1)如圖2,連接OD,
∵⊙O與AB相切,∴OD⊥AB,
∵tan∠BAC=,OD=2,∴AD=4,OA=,
∴cos∠BAC==;
(2)如圖1,連接OA,
∵⊙O與AB相切,∴OA⊥AB,
又∵OG⊥AC,∴∠AOG=90°﹣∠OAG=∠BAC,
∴cos∠AOG=cos∠BAC=.
∵cos∠AOG=,
∴OG=OAcos∠AOG=2×=;
(3)如圖3,連接OD交AC于點F,
∵⊙O與AB相切,∴OD⊥AB,∴∠FOG=90°﹣∠OFG,
又∵OG⊥AC,∴∠BAC=90°﹣∠AFD,
又∵∠OFG=∠AFD,∴∠FOG=∠BAC,
∵tan∠BAC=,
∴FD=ADtan∠BAC=x,
∴OF=2﹣x,∵cos∠BAC=cos∠FOG=,
∴OG=OFcos∠FOG=(2﹣x)=﹣x+,x的取值范圍是:0≤x≤4.
科目:初中數(shù)學 來源: 題型:
【題目】某校根據(jù)課程設置要求,開設了數(shù)學類拓展性課程,為了解學生最喜歡的課程內容,隨機抽取了部分學生進行問卷調查(每人必須且只選中其中一項),并將統(tǒng)計結果繪制成如下統(tǒng)計圖(不完整),請根據(jù)圖中信息回答問題:
(1)求m,n的值.
(2)補全條形統(tǒng)計圖.
(3)該校共有1200名學生,試估計全校最喜歡“數(shù)學史話”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E為AB上的點(不與A,B重合),△ADE與△FDE關于DE對稱,作射線CF,與DE的延長線相交于點G,連接AG,
(1)當∠ADE=15°時,求∠DGC的度數(shù);
(2)若點E在AB上移動,請你判斷∠DGC的度數(shù)是否發(fā)生變化,若不變化,請證明你的結論;若會發(fā)生變化,請說明理由;
(3)如圖2, 當點F落在對角線BD上時,點M為DE的中點,連接AM,FM,請你判斷四邊形AGFM的形狀,并證明你的結論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十年樹木,百年樹人”,教師的素養(yǎng)關系到國家的未來.我市某區(qū)招聘音樂教師采用筆試、專業(yè)技能測試、說課三種形式進行選拔,這三項的成績滿分均為100分,并按2∶3∶5的比例納入總分.最后,按照成績的排序從高到低依次錄取.該區(qū)要招聘2名音樂教師,通過筆試、專業(yè)技能測試篩選出前6名選手進入說課環(huán)節(jié),這6名選手的各項成績見下表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 |
筆試成績/分 | 66 | 90 | 86 | 64 | 65 | 84 |
專業(yè)技能測試成績/分 | 95 | 92 | 93 | 80 | 88 | 92 |
說課成績/分 | 85 | 78 | 86 | 88 | 94 | 85 |
(1)寫出說課成績的中位數(shù)、眾數(shù);
(2)已知序號為1,2,3,4號選手的成績分別為84.2分,84.6分,88.1分,80.8分,請你判斷這6名選手中序號是多少的選手將被錄用?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列命題
①一組對邊平行,一組對角相等的四邊形是平行四邊形.
②兩組對角分別相等的四邊形是平行四邊形.
③一組對邊相等,一組對角相等的四邊形是平行四邊形.
④一組對邊平行,一條對角線被另一條對角線平分的四邊形是平行四邊形.
(1)上述四個命題中,是真命題的是 (填寫序號);
(2)請選擇一個真命題進行證明.(寫出已知、求證,并完成證明)
已知: .
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=kx﹣4(k≠0)與坐標軸交于A、B兩點,與反比例函數(shù)y=(m≠0,x>0)在第一象限內的圖象交于點C(4,a),反比例函數(shù)圖象上有一點D(b,6),連接OD和AD,已知:tan∠OAB=.
(1)求一次函數(shù)和反比例函數(shù)的解析式.
(2)求△AOD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知多項式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).
(1)若多項式的值與字母x的取值無關,求a、b的值.
(2)在(1)的條件下,先化簡多項式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.
(3)在(1)的條件下,求(b+a2)+(2b+a2)+(3b+a2)+…+(9b+a2)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com