【題目】如圖,已知AB∥DE,∠B=60°,AE⊥BC,垂足為點(diǎn)E.

(1)求∠AED的度數(shù);
(2)當(dāng)∠EDC滿足什么條件時(shí),AE∥DC證明你的結(jié)論.

【答案】
(1)解:∵AE⊥BC,

∴∠AEB=90°,

∵∠B=60°,

∴∠BAE=30°,

又∵AB∥DE,

∴∠AED=∠BAE=30°


(2)解:當(dāng)∠EDC=30°時(shí),則AE∥DC,理由如下:

∵∠AED=30°,

∴∠AED=∠EDC,

∴AE∥DC(內(nèi)錯(cuò)角相等,兩線平行)


【解析】由AE⊥BC,∠B=60°,得到∠BAE=30°,由平行線AB∥DE的性質(zhì),得到∠AED=∠BAE=30°;如果∠AED=∠EDC=30°時(shí),則AE∥DC.
【考點(diǎn)精析】本題主要考查了平行線的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,高AD、BE相交于點(diǎn)H,BC=,在BE上截取BG=2,以GE為邊作等邊三角形GEF,則ABH與GEF重疊(陰影)部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小偉遇到這樣一個(gè)問題:如圖1,在△ABC(其中∠BAC是一個(gè)可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.

小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點(diǎn)B為旋轉(zhuǎn)中心將△ABP逆時(shí)針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點(diǎn)A落在A′C上時(shí),此題可解(如圖2).

(1)請(qǐng)你回答:AP的最大值是

(2)參考小偉同學(xué)思考問題的方法,解決下列問題:

如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點(diǎn),請(qǐng)寫出求AP+BP+CP的最小值長(zhǎng)的解題思路.

提示:要解決AP+BP+CP的最小值問題,可仿照題目給出的做法.把△ABP繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)60,得到△A′BP′.

①請(qǐng)畫出旋轉(zhuǎn)后的圖形

②請(qǐng)寫出求AP+BP+CP的最小值的解題思路(結(jié)果可以不化簡(jiǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤(rùn)20元,每件B種紀(jì)念品可獲利潤(rùn)30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn)50°得△A1B1C1(A、B分別對(duì)應(yīng)A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,點(diǎn)D為斜邊AB的中點(diǎn),BC=6,CD=5,過點(diǎn)A作AEAD且AE=AD,過點(diǎn)E作EF垂直于AC邊所在的直線,垂足為點(diǎn)F,連接DF,請(qǐng)你畫出圖形,并直接寫出線段DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我區(qū)注重城市綠化提高市民生活質(zhì)量,新建林蔭公園計(jì)劃購買甲、乙兩種樹苗共800株,甲種樹苗每株12元,乙種樹苗每株15元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購買這兩種樹苗共用去10500元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費(fèi)用最低?并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(2x+1)(x﹣1)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知∠A=∠F,∠C=∠D,按圖填空,并在括號(hào)內(nèi)注明理由.

∵∠A=∠F(

∴∠D=∠ABD(
又∵∠D=∠C(
∴∠C=∠ABD(

查看答案和解析>>

同步練習(xí)冊(cè)答案